
Sergey Konstantinov. The API.

yatwirl@gmail.com · linkedin.com/in/twirl · twirl.substack.com

API-�rst development is one of  the hottest technical topics nowadays

since many companies have started to realize that APIs serves as a

multiplier to their opportunities — but it ampli�es the design mistakes as

well.

This book is written to share expertise and describe best practices in

designing and developing APIs. It comprises six sections dedicated to the

following topics:

The API design

API patterns

Backward compatibility

HTTP APIs & the REST architectural principles

SDKs and UI libraries

API product management.

Illustrations & inspiration by Maria Konstantinova · art.mari.ka

This book is distributed under the Creative Commons

Attribution-NonCommercial 4.0 International licence.

mailto:yatwirl@gmail.com
https://www.linkedin.com/in/twirl/
https://twirl.substack.com/
https://www.instagram.com/art.mari.ka/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/




TABLE OF CONTENTS

INTRODUCTION
Chapter 1. On the Structure of This Book
Chapter 2. The API Definition
Chapter 3. API Quality Criteria
Chapter 4. Choosing Solutions for API Development
Chapter 5. The API-First Approach
Chapter 6. On Backward Compatibility
Chapter 7. On Versioning
Chapter 8. Terms and Notation Keys

SECTION I. THE API DESIGN
Chapter 9. The API Contexts Pyramid
Chapter 10. Defining an Application Field
Chapter 11. Separating Abstraction Levels
Chapter 12. Isolating Responsibility Areas
Chapter 13. Describing Final Interfaces
Chapter 14. Annex to Section I. Generic API Example

SECTION II. THE API PATTERNS
Chapter 15. On Design Patterns in the API Context
Chapter 16. Authenticating Partners and Authorizing API Calls
Chapter 17. Synchronization Strategies
Chapter 18. Eventual Consistency
Chapter 19. Asynchronicity and Time Management
Chapter 20. Lists and Accessing Them
Chapter 21. Bidirectional Data Flows. Push and Poll Models
Chapter 22. Multiplexing Notifications. Asynchronous Event Processing
Chapter 23. Atomicity of Bulk Changes
Chapter 24. Partial Updates
Chapter 25. Degradation and Predictability

SECTION III. THE BACKWARD COMPATIBILITY
Chapter 26. The Backward Compatibility Problem Statement
Chapter 27. On the Waterline of the Iceberg
Chapter 28. Extending through Abstracting
Chapter 29. Strong Coupling and Related Problems
Chapter 30. Weak Coupling



Chapter 31. Interfaces as a Universal Pattern
Chapter 32. The Serenity Notepad

SECTION IV. HTTP APIS & THE REST ARCHITECTURAL PRINCIPLES
Chapter 33. On the HTTP API Concept. Paradigms of Developing Client-
Server Communication
Chapter 34. Advantages and Disadvantages of HTTP APIs Compared to
Alternative Technologies
Chapter 35. The REST Myth
Chapter 36. Components of an HTTP Request and Their Semantics
Chapter 37. Organizing HTTP APIs Based on the REST Principles
Chapter 38. Designing a Nomenclature of URLs. The CRUD Operations
Chapter 39. Working with HTTP API Errors
Chapter 40. Final Provisions and General Recommendations

SECTION V. SDKS & UI LIBRARIES
Chapter 41. On Terminology. An Overview of Technologies for UI
Development
Chapter 42. SDKs: Problems and Solutions
Chapter 43. Problems of Introducing UI Components
Chapter 44. Decomposing UI Components
Chapter 45. The MV* Frameworks
Chapter 46. The Backend-Driven UI
Chapter 47. Shared Resources and Asynchronous Locks
Chapter 48. Computed Properties
Chapter 49. Conclusion

SECTION VI. THE API PRODUCT
Chapter 50. The API as a Product
Chapter 51. API Business Models
Chapter 52. Developing a Product Vision
Chapter 53. Communicating with Developers
Chapter 54. Communicating with Business Owners
Chapter 55. An API Services Lineup
Chapter 56. API Key Performance Indicators
Chapter 57. Identifying Users and Preventing Fraud
Chapter 58. The Technical Means of Preventing ToS Violations
Chapter 59. Supporting Customers
Chapter 60. Documentation
Chapter 61. Testing Environments



Chapter 62. Managing Expectations



INTRODUCTION

Chapter 1. On the Structure of This Book

The book you're holding in your hands is dedicated to developing APIs as a

separate engineering task. Although many concepts we're going to discuss

apply to any type of  so�ware, our primary goal is to describe those

problems and approaches to solving them that are most relevant in the

context of  the API subject area.

The book comprises the Introduction and six large sections. The �rst three

(namely, “The API Design”, “The API Patterns”, and “The Backward

Compatibility”) are fully abstract and not bound to any concrete

technology. We hope they will help those readers who seek to build a

systematic understanding of  the API architecture in developing complex

interface hierarchies. The proposed approach, as we see it, allows for

designing APIs from start to �nish, from a raw idea to concrete

implementation.

The fourth and ��h sections are dedicated to speci�c technologies, namely

developing HTTP APIs (in the “REST paradigm”) and SDKs (we will mostly

talk about UI component libraries).

Finally, in the sixth section, which is the least technical of  all, we will

discuss APIs as products and focus on non-engineering aspects of  the API

lifecycle: doing market research, positioning the service, communicating

to consumers, setting KPIs for the team, etc. We insist that the last section

is equally important to both PMs and so�ware engineers as products for

developers thrive only if  the product and technical teams work jointly on

them.



We expect that the reader possesses expertise in so�ware engineering, so

we do not provide detailed de�nitions and explanations of  the terms that a

developer should already be familiar with in our understanding. Without

this knowledge, it will be rather uncomfortable to read the last section of

the book (and even more so, other sections). We sincerely apologize for

this but that's the only way of  writing the book without tripling its size. We

provide the list of  recommended readings in the “Bibliography” section.

Let's start.



Chapter 2. The API Definition

Before we start talking about the API design, we need to explicitly de�ne

what the API is. Encyclopedias tell us that “API” is an acronym for

“Application Program Interface.” This de�nition is �ne but useless, much

like the “Man” de�nition by Plato: “Man stands upright on two legs

without feathers.” This de�nition is �ne again, but it gives us no

understanding of  what's so important about a Man. (Actually, it's not even

“�ne”: Diogenes of  Sinope once brought a plucked chicken, saying “That's

Plato's Man.” And Plato had to add “with broad nails” to his de�nition.)

What does the API mean apart from the formal de�nition?

You're possibly reading this book using a Web browser. To make the

browser display this page correctly, a bunch of  things must work correctly:

parsing the URL according to the speci�cation, the DNS service, the TLS

handshake protocol, transmitting the data over the HTTP protocol, HTML

document parsing, CSS document parsing, correct HTML+CSS rendering,

and so on and so forth.

But those are just the tip of  the iceberg. To make the HTTP protocol work

you need the entire network stack (comprising 4-5 or even more di�erent

level protocols) to work correctly. HTML document parsing is performed

according to hundreds of  di�erent speci�cations. Document rendering

operations call the underlying operating system APIs, or even directly

graphical processor APIs. And so on, down to modern CISC processor

commands that are implemented on top of  the API of  microcommands.

In other words, hundreds or even thousands of  di�erent APIs must work

correctly to make basic actions possible such as viewing a webpage.

Modern Internet technologies simply couldn't exist without these tons of

APIs working �ne.



An API is an obligation. A formal obligation to connect di�erent

programmable contexts.

When the author of  this book is asked for an example of  a well-designed

API, he will usually show a picture of  a Roman aqueduct:

The Pont-du-Gard aqueduct. Built in the 1st century AD. Image Credit:

Slepitssskaya / Envato

It interconnects two areas

Backward compatibility has not been broken even once in two

thousand years.

What di�ers between a Roman aqueduct and a good API is that in the case

of  APIs, the contract is presumed to be programmable. To connect the two

areas, writing some code is needed. The goal of  this book is to help you design

APIs that serve their purposes as solidly as a Roman aqueduct does.

https://photodune.net/user/slepitssskaya
https://photodune.net/user/slepitssskaya


An aqueduct also illustrates another problem with the API design: your

customers are engineers themselves. You are not supplying water to end-

users. Suppliers are plugging their pipes into your engineering structure,

building their own structures upon it. On the one hand, you may provide

access to water to many more people through them, not spending your

time plugging each individual house into your network. On the other

hand, you can't control the quality of  suppliers' solutions, and you are to

blame every time there is a water problem caused by their incompetence.

The situation with API design becomes even more complicated when we

acknowledge that modern APIs are typically interfaces to distributed

systems. There is no single aqueduct but rather a collection of  connections

between multiple sources and destinations, o�en established on-demand

— and your task is to make these connections work coherently so that

clients don't even need to know how complex this water distribution

architecture is internally.

That's why designing an API implies a larger area of  responsibility. An API

is a multiplier to both your opportunities and your mistakes.



Chapter 3. API Quality Criteria

Before we start laying out the recommendations for designing API

architecture, we ought to specify what constitutes a “high-quality API,”

and what the bene�ts of  having a high-quality API are. Quite obviously,

the quality of  an API is primarily de�ned through its capability to solve

developers' and users' problems. (Let's leave out the part where an API

vendor pursues its own goals, not providing a useful product.)

So, how can a “high-quality” API design assist developers in solving their

(and their users') problems? Quite simply: a well-designed API allows

developers to do their jobs in the most e�cient and convenient manner.

The gap between formulating a task and writing working code must be as

short as possible. Among other things, this means that:

It must be entirely obvious from your API's structure how to solve a

task:

Ideally, developers should be able to understand at �rst glance,

which entities are meant to solve their problem.

The API must be readable:

Developers should be able to write correct code simply by

examining the methods' nomenclature without becoming

entangled in details (especially API implementation details!).

It is also essential to mention that not only should the problem

solution (the “happy path”) be obvious, but also the handling of

errors and exceptions (the “unhappy path”).

The API must be consistent:

When developing new functionality (i.e. , using previously

unknown API entities) developers may write new code similar to

the code they have already written using the known API

concepts, and this new code should work.

It is highly desirable that the API aligns well with the principles

and rules of  the used platform and framework (if  any).



However, the static convenience and clarity of  APIs are simple parts. A�er

all, nobody seeks to make an API deliberately irrational and unreadable.

When we develop an API, we always start with clear basic concepts.

Providing you have some experience in APIs, it's quite hard to make an

API core that fails to meet obviousness, readability, and consistency

criteria.

Problems begin when we start to expand our API. Adding new

functionality sooner or later results in transforming once plain and simple

API into a mess of  con�icting concepts, and our e�orts to maintain

backward compatibility will lead to illogical, unobvious, and simply bad

design solutions. It is partly related to an inability to predict the future in

detail: your understanding of  “�ne” APIs will change over time, both in

objective terms (what problems the API is to solve, and what is best

practice) and in subjective terms too (what obviousness, readability, and

consistency really mean to your API design).

The principles we are explaining below are speci�cally oriented towards

making APIs evolve smoothly over time, without being turned into a pile

of  mixed inconsistent interfaces. It is crucial to understand that this

approach isn't free: the necessity to bear in mind all possible extension

variants and to preserve essential growth points means interface

redundancy and possibly excessive abstractions being embedded in the

API design. Besides, both make the developers' jobs harder. Providing

excess design complexities being reserved for future use makes sense

only if  this future actually exists for your API. Otherwise, it's simply

overengineering.



Chapter 4. Choosing Solutions for API Development

Let's return to the metaphor of  an API as an aqueduct connecting two

contexts. While striving to make the use of  our construct convenient for

customers, we encounter another side of  the problem: how would our

customers prefer our API to be designed? Are there any widely adopted

techniques for connecting water pipes in our subject area?

In most cases, such standards exist; someone has already designed similar

APIs before. The farther apart two contexts are, the more abstractions are

invented to connect them, and the more frameworks are developed to

work with these abstractions.

Utilizing conventional techniques is an essential component of  API

quality. In areas where an established communication standard exists

(such as, for example, the TCP/IP protocol in computer networks),

inventing a new one is only viable if  you are one hundred percent certain

that its advantages will be so obvious that developers will forgive the

necessity of  learning a new technology to work with the API.

However, in many subject areas, such certainty does not exist. On the

contrary, various paradigms of  API design compete against each other,

and you will have to make a choice in favor of  one of  them (or develop a

custom solution). We will discuss two such areas in sections IV and V of

this book:

Selecting a paradigm for organizing client-server communication

(such as REST API, RPC, GraphQL, etc.) — in the “Advantages and

Disadvantages of  HTTP APIs Compared to Alternative Technologies”

chapter

Selecting an approach to developing UI components — in the “On

Terminology. An Overview of  Technologies for UI Development”

chapter.



Chapter 5. The API-First Approach

Today, more and more IT companies are recognizing the importance of  the

“API-�rst” approach, which is the paradigm of  developing so�ware with a

heavy focus on APIs.

However, we must di�erentiate between the product concept of  the API-

�rst approach and the technical one.

The former means that the �rst (and sometimes the only) step in

developing a service is creating an API for it, and we will discuss it in “The

API Product” section of  this book.

If  we talk about the API-�rst approach in a technical sense, we mean the

following: the contract, i.e. the obligation to connect two

programmable contexts, precedes the implementation and de�nes

it. More speci�cally, two rules must be respected:

The contract is developed and committed to in the form of  a

speci�cation before the functionality is implemented.

If  it turns out that the implementation and the contract di�er, the

implementation is to be �xed, not the contract.

The “speci�cation” in this context is a formal machine-readable

description of  the contract in one of  the interface de�nition languages

(IDL) — for example, in the form of  a Swagger/OpenAPI document or a

.proto �le.

Both rules assert that partner developers' interests are given the highest

priority:

�ule #1 allows partners to write code based on the speci�cation

without coordinating the process with the API provider:



The possibility of  auto-generating code based on the

speci�cation emerges, which might make development

signi�cantly less complex and error-prone or even automate it

The code might be developed without having access to the API.

�ule #2 means partners won't need to change their implementations

should some inconsistencies between the speci�cation and the API

functionality arise.

Therefore, for your API consumers, the API-�rst approach is a guarantee

of  a kind. However, it only works if  the API was initially well-designed. If

some irreparable �aws in the speci�cation surface, we would have no

other option but to break rule #2.



Chapter 6. On Backward Compatibility

Backward compatibility is a temporal characteristic of  an API. The

obligation to maintain backward compatibility is the crucial point where

API development di�ers from so�ware development in general.

Of  course, backward compatibility isn't absolute. In some subject areas

shipping new backward-incompatible API versions is routine.

Nevertheless, every time a new backward-incompatible API version is

deployed, developers need to make some non-zero e�ort to adapt their

code to the new version. In this sense, releasing new API versions puts a

sort of  “tax” on customers who must spend quite real money just to ensure

their product continues working.

Large companies that occupy solid market positions could a�ord to charge

such a tax. Furthermore, they may introduce penalties for those who

refuse to adapt their code to new API versions, up to disabling their

applications.

From our point of  view, such a practice cannot be justi�ed. Don't impose

hidden levies on your customers. If  you can avoid breaking backward

compatibility, never break it.

Of  course, maintaining old API versions is a sort of  tax as well. Technology

changes, and you cannot foresee everything, regardless of  how nicely your

API is initially designed. At some point keeping old API versions results in

an inability to provide new functionality and support new platforms, and

you will be forced to release a new version. But at least you will be able to

explain to your customers why they need to make an e�ort.

We will discuss API lifecycle and version policies in Section II.



Chapter 7. On Versioning

Here and throughout this book, we �rmly adhere to the Semantic

Versioning (semver)  principles:

�. API versions are denoted with three numbers, e.g. , 1.2.3.

�. The �rst number (a major version) increases when backward-

incompatible changes in the API are introduced.

�. The second number (a minor version) increases when new

functionality is added to the API while keeping backward

compatibility intact.

�. The third number (a patch) increases when a new API version

contains bug �xes only.

The sentences “a major API version” and “a new API version, containing

backward-incompatible changes” are considered equivalent.

It is usually (though not necessary) agreed that the last stable API release

might be referenced by either a full version (e.g. , 1.2.3) or a reduced one

(1.2 or just 1). Some systems support more sophisticated schemes for

de�ning the desired version (for example, ^1.2.3 reads like “get the last

stable API release that is backward-compatible to the 1.2.3 version”) or

additional shortcuts (for example, 1.2-beta to refer to the last beta release

of  the 1.2 API version family). In this book, we will mostly use

designations like v1 (v2, v3, etc.) to denote the latest stable release of  the

1.x.x version family of  an API.

The practical meaning of  this versioning system and the applicable

policies will be discussed in more detail in the “Backward Compatibility

Problem Statement” chapter.

1



References

Semantic Versioning 2.0.0

semver.org

1

https://semver.org/


Chapter 8. Terms and Notation Keys

So�ware development is characterized, among other things, by the

existence of  many di�erent engineering paradigms, whose adherents are

sometimes quite aggressive towards other paradigms' adherents. While

writing this book, we are deliberately avoiding using terms like “method,”

“object,” “function,” and so on, using the neutral term “entity” instead.

“Entity” means some atomic functionality unit, like a class, method,

object, monad, prototype (underline what you think is right).

As for an entity's components, we regretfully failed to �nd a proper term,

so we will use the words “�elds” and “methods.”

Most of  the examples of  APIs will be provided in the form of  JSON-over-

HTTP endpoints. This is some sort of  notation that, as we see it, helps to

describe concepts in the most comprehensible manner. A GET /v1/orders

endpoint call could easily be replaced with an orders.get() method call,

local or remote; JSON could easily be replaced with any other data format.

The semantics of  statements shouldn't change.

Let's take a look at the following example:



// Method description
POST /v1/buckets/{id}/operation
X-Idempotency-Token: <idempotency token>
{
  …
// This is a single-line comment
"some_parameter": "example value",

  …
}
→ 404 Not Found
Cache-Control: no-cache
{
/* And this is

     a multiline comment */
"error_reason",
"error_message":
"Long error message↵

     that will span several↵
     lines"
}

It should be read like this:

A client performs a POST request to a /v1/buckets/{id}/operation

resource, where {id} is to be replaced with some bucket's identi�er

({something} notation refers to the nearest term from the le� unless

explicitly speci�ed otherwise).

A speci�c X-Idempotency-Token header is added to the request

alongside standard headers (which we omit).

Terms in angle brackets (<idempotency token>) describe the semantics

of  an entity value (�eld, header, parameter).

A speci�c JSON, containing a some_parameter �eld and some other

unspeci�ed �elds (indicated by ellipsis) is being sent as a request

body payload.

In response (marked with an arrow symbol →) the server returns a 404

Not Found status code; the status might be omitted (treat it like a 200

OK if  no status is provided).

The response could possibly contain additional notable headers.



The response body is a JSON comprising two �elds: error_reason and

error_message. Absence of  a value means that the �eld contains

exactly what you expect it should contain — so there is some generic

error reason value which we omitted.

If  some token is too long to �t on a single line, we will split it into

several lines adding ↵ to indicate it continues next line.

The term “client” here stands for an application being executed on a user's

device, either a native or a web one. The terms “agent” and “user agent” are

synonymous with “client.”

Some request and response parts might be omitted if  they are irrelevant to

the topic being discussed.

Simpli�ed notation might be used to avoid redundancies, like POST

/operation {…, "some_parameter", …} → { "operation_id" }; request

and response bodies might also be omitted.

We will use sentences like “POST /v1/buckets/{id}/operation method”

(or simply “buckets/operation method,” “operation” method — if  there

are no other operations in the chapter, so there is no ambiguity) to refer to

such endpoint de�nitions.

Apart from HTTP API notation, we will employ C-style pseudocode, or, to

be more precise, JavaScript-like or Python-like one since types are

omitted. We assume such imperative structures are readable enough to

skip detailed grammar explanations. HTTP API-like samples intend to

illustrate the contract, i.e. , how we would design an API. Samples in

pseudocode are intended to illustrate how developers might work with the

API in their code, or how we would implement SDKs based on the

contract.



SECTION I. THE API DESIGN

Chapter 9. The API Contexts Pyramid

The approach we use to design APIs comprises four steps:

De�ning an application �eld

Separating abstraction levels

Isolating responsibility areas

Describing �nal interfaces.

This four-step algorithm actually builds an API from top to bottom, from

common requirements and use case scenarios down to a re�ned

nomenclature of  entities. In fact, moving this way will eventually conclude

with a ready-to-use API, and that's why we value this approach highly.

It might seem that the most useful pieces of  advice are given in the last

chapter, but that's not true. The cost of  a mistake made at certain levels

di�ers. Fixing the naming is simple; revising the wrong understanding of

what the API stands for is practically impossible.

Here and throughout we will illustrate the API design concepts using a

hypothetical example of  an API that allows ordering a cup of  co�ee in city

cafes. Just in case: this example is totally synthetic. If  we were to design

such an API in the real world, it would probably have very little in common

with our �ctional example.

NB. A knowledgeable reader might notice that the approach we discuss is

quite similar to the concept of  “Levels of  Design” proposed by Steve

McConnell in his de�nitive book.  This is both true and not true at the

same time. On one hand, as APIs are so�ware, all the classical architecture

design patterns work for them, including those described by McConnell.

1



On the other hand, there is a major di�erence between exposing APIs and

working on shared code: you only provide the contract to customers, as they

are unable and/or unwilling to check the code itself. This shi�s the focus

signi�cantly, starting from the very �rst McConnell's design level: while it

is your number-one task to split the grand design into subsystems when

you develop a so�ware project as an architect, it is o�en undesirable to

provide the notion of  your subsystem split in the API, as API consumers

do not need to know about it. In the following chapters, we will focus on

providing a well-designed nomenclature of  entities that is both

convenient for external developers and allows for implementing e�cient

architecture under the hood.

References

McConnell, S. C. (2004), 5.2 Key Design Concepts1



Chapter 10. Defining an Application Field

The key question you should ask yourself  before starting to develop any

so�ware product, including an API, is: what problem do we solve? It

should be asked four times, each time putting emphasis on a di�erent

word.

�. What problem do we solve? Could we clearly outline the situation in

which our hypothetical API is needed by developers?

�. What problem do we solve? Are we sure that the abovementioned

situation poses a problem? Does someone really want to pay (literally

or �guratively) to automate a solution for this problem?

�. What problem do we solve? Do we actually possess the expertise to

solve the problem?

�. What problem do we solve? Is it true that the solution we propose

solves the problem indeed? Aren't we creating another problem

instead?

So, let's imagine that we are going to develop an API for automated co�ee

ordering in city cafes, and let's apply the key question to it.

�. Why would someone need an API to make co�ee? Why is ordering

co�ee via “human-to-human” or “human-to-machine” interfaces

inconvenient? Why have a “machine-to-machine” interface?

Possibly, we're solving awareness and selection problems? To

provide humans with full knowledge of  what options they have

right now and right here.

Possibly, we're optimizing waiting times? To save the time

people waste while waiting for their beverages.



Possibly, we're reducing the number of  errors? To help people

get exactly what they wanted to order, stop losing information in

imprecise conversational communication, or in dealing with

unfamiliar co�ee machine interfaces?

The “why” question is the most important of  all questions you must

ask yourself. And not only about global project goals but also locally

about every single piece of  functionality. If  you can't brie�y and

clearly answer the question “what this entity is needed for” then

it's not needed.

Here and throughout we assume, to make our example more complex

and bizarre, that we are optimizing all three factors.

�. Do the problems we outlined really exist? Do we really observe

unequal co�ee-machine utilization in the mornings? Do people

really su�er from the inability to �nd nearby a to�ee nut latte they

long for? Do they really care about the minutes they spend in lines?

�. Do we actually have resources to solve the problem? Do we have

access to a su�cient number of  co�ee machines and users to ensure

the system's e�ciency?

�. Finally, will we really solve a problem? How are we going to quantify

the impact our API makes?

In general, there are no simple answers to those questions. Ideally, you

should start the work with all the relevant metrics measured: how much

time is wasted exactly, and what numbers will we achieve providing we

have such a co�ee machine density. Let us also stress that in the real world

obtaining these numbers is only possible if  you're entering a stable

market. If  you try to create something new, your only option is to rely on

your intuition.



Why an API?

Since our book is dedicated not to so�ware development per se, but to

developing APIs, we should look at all those questions from a di�erent

angle: why does solving those problems speci�cally require an API, not

simply a specialized so�ware application? In terms of  our �ctional

example, we should ask ourselves: why provide a service to developers that

allows for brewing co�ee for end users instead of  just making an app?

In other words, there must be a solid reason to split two so�ware

development domains: there are vendors that provide APIs, and there are

vendors that develop services for end users. Their interests are somehow

di�erent to such an extent that coupling these two roles in one entity is

undesirable. We will talk about the motivation to speci�cally provide APIs

instead of  apps (or as an addition to an app) in more detail in Section III.

We should also note that you should try making an API when, and only

when, your answer to question (3) is “because that's our area of  expertise.”

Developing APIs is a sort of  meta-engineering: you're writing some

so�ware to allow other vendors to develop so�ware to solve users'

problems. You must possess expertise in both domains (APIs and user

products) to design your API well.

As for our speculative example, let us imagine that in the nearby future,

some tectonic shi� happened within the co�ee brewing market. Two

distinct player groups took shape: some companies provide “hardware,”

i.e. , co�ee machines; other companies have access to customer audiences.

Something like the modern-day �ights market looks like: there are air

companies that actually transport passengers, and there are trip planning

services where users choose between trip options the system generates for

them. We're aggregating hardware access to allow app vendors to order

freshly brewed co�ee.



What and How

A�er �nishing all these theoretical exercises, we should proceed directly

to designing and developing the API, having a decent understanding of

two things:

What we're doing exactly

How we're doing it exactly.

In our co�ee case, we are:

Providing an API to services with a larger audience so that their users

may order a cup of  co�ee in the most e�cient and convenient

manner

Abstracting access to co�ee machines' “hardware” and developing

generalized so�ware methods to select a beverage kind and a location

to make an order.



Chapter 11. Separating Abstraction Levels

“Separate abstraction levels in your code” is possibly the most general

advice for so�ware developers. However, we don't think it would be a

grave exaggeration to say that separating abstraction levels is also the

most challenging task for API developers.

Before proceeding to the theory, we should clearly formulate why

abstraction levels are so important, and what goals we're trying to achieve

by separating them.

Let us remember that a so�ware product is a medium that connects two

distinct contexts, thus transforming terms and operations belonging to

one subject area into concepts from another area. The more these areas

di�er, the more interim connecting links we have to introduce.

Returning to our co�ee example, what entity abstraction levels do we see?

�. We're preparing an order via the API — one (or more) cups of  co�ee

— and receiving payments for this.

�. Each cup of  co�ee is prepared according to some recipe implying the

presence of  various ingredients and sequences of  preparation steps.

�. Each beverage is prepared on a physical coffee machine, occupying

some position in space.

Each level presents a developer-facing “facet” in our API. While

elaborating on the hierarchy of  abstractions, we are primarily trying to

reduce the interconnectivity of  di�erent entities. This would help us to

achieve several goals:

�. Simplifying developers' work and the learning curve. At each

moment, a developer is operating only those entities that are

necessary for the task they're solving right now. Conversely, poorly

designed isolation leads to situations where developers have to keep

in mind a lot of  concepts mostly unrelated to the task being solved.



�. Preserving backward compatibility. Properly separated abstraction

levels allow for adding new functionality while keeping interfaces

intact.

�. Maintaining interoperability. Properly isolated low-level abstractions

help us to adapt the API to di�erent platforms and technologies

without changing high-level entities.

Let's assume we have the following interface:

// Returns the lungo recipe
GET /v1/recipes/lungo

// Posts an order to make a lungo
// using the specified coffee-machine,
// and returns an order identifier
POST /v1/orders
{
"coffee_machine_id",
"recipe": "lungo"

}

// Returns the order
GET /v1/orders/{id}

Let's consider a question: how exactly should developers determine

whether the order is ready or not? Let's say we do the following:

Add a reference beverage volume to the lungo recipe

Add the currently prepared volume of  the beverage to the order state.

GET /v1/recipes/lungo
→
{
  …
"volume": "100ml"

}



GET /v1/orders/{id}
→
{
  …
"volume": "80ml"

}

Then a developer just needs to compare two numbers to �nd out whether

the order is ready.

This solution intuitively looks bad, and it really is. It violates all the

aforementioned principles.

First, to solve the task “order a lungo” a developer needs to refer to the

“recipe” entity and learn that every recipe has an associated volume. Then

they need to embrace the concept that an order is ready at that particular

moment when the prepared beverage volume becomes equal to the

reference one. This concept is simply unguessable, and knowing it is

mostly useless.

Second, we will have automatically got problems if  we need to vary the

beverage size. For example, if  one day we decide to o�er customers a

choice of  how many milliliters of  lungo they desire exactly, then we have

to perform one of  the following tricks.

Option I: we have a list of  possible volumes �xed and introduce bogus

recipes like /recipes/small-lungo or recipes/large-lungo. Why

“bogus”? Because it's still the same lungo recipe, same ingredients, same

preparation steps, only volumes di�er. We will have to start mass-

producing recipes, only di�erent in volume, or introduce some recipe

“inheritance” to be able to specify the “base” recipe and just rede�ne the

volume.

Option II: we modify an interface, pronouncing volumes stated in recipes

are just the default values. We allow requesting di�erent cup volumes

while placing an order:



POST /v1/orders
{
"coffee_machine_id",
"recipe": "lungo",
"volume": "800ml"

}

For those orders with an arbitrary volume requested, a developer will need

to obtain the requested volume, not from the GET /v1/recipes endpoint,

but the GET /v1/orders one. Doing so we're getting a whole bunch of

related problems:

There is a signi�cant chance that developers will make mistakes in

this functionality implementation if  they add arbitrary volume

support in the code working with the POST /v1/orders handler, but

forget to make corresponding changes in the order readiness check

code.

The same �eld (co�ee volume) now means di�erent things in

di�erent interfaces. In the context of  the GET /v1/recipes endpoint,

the volume �eld means “a volume to be prepared if  no arbitrary

volume is speci�ed in the POST /v1/orders request”; and it cannot be

renamed to “default volume” easily.

So we will get this:

GET /v1/orders/{id}
→
{
  …
// this is a currently
// prepared volume, bearing
// the legacy name
"volume": "80ml",
// and this is the volume
// requested by user
"volume_requested": "800ml"

}



Third, the entire scheme becomes totally inoperable if  di�erent types of

co�ee machines produce di�erent volumes of  lungo. To introduce the

“lungo volume depends on machine type” constraint we have to do quite a

nasty thing: make recipes depend on co�ee machine ids. By doing so we

start actively “stir” abstraction levels: one part of  our API (recipe

endpoints) becomes unusable without explicit knowledge of  another part

(co�ee machines listing). And what is even worse, developers will have to

change the logic of  their apps: previously it was possible to choose volume

�rst, then a co�ee machine; but now this step must be rebuilt from scratch.

Okay, we understood how to make things naughty. But how to make them

nice?

Abstraction levels separation should go in three directions:

�. From user scenarios to their internal representation: high-level

entities and their method nomenclatures must directly re�ect the API

usage scenarios; low-level entities re�ect the decomposition of  the

scenarios into smaller parts.

�. From user to “raw” data subject �eld terms — in our case from high-

level terms like “order,” “recipe,” and “café” to low-level terms like

“beverage temperature,” “co�ee machine geographical coordinates,”

etc.

�. Finally, from data structures suitable for end users to “raw” data

structures — in our case, from “lungo recipe” and “the "Chamomile"

café chain” to the raw byte data stream from “Good Morning” co�ee

machine sensors.

The more the distance between programmable contexts our API connects,

the deeper the hierarchy of  the entities we are to develop.

In our example with co�ee readiness detection, we clearly face the

situation when we need an interim abstraction level:



On one hand, an “order” should not store the data regarding co�ee

machine sensors

On the other hand, a co�ee machine should not store the data

regarding order properties (and its API probably doesn't provide such

functionality).

A naïve approach to this situation is to design an interim abstraction level

as a “connecting link,” which reformulates tasks from one abstraction level

into another. For example, introduce a task entity like that:

{
  …
"volume_requested": "800ml",
"volume_prepared": "200ml",
"readiness_policy": "check_volume",
"ready": false,
"coffee_machine_id",
"operation_state": {
"status": "executing",
"operations": [
// description of commands
// being executed on 
// a physical coffee machine

    ]
  }
  …
}

So an order entity will keep links to the recipe and the task, thus not

dealing with other abstraction layers directly:

GET /v1/orders/{id}
→
{
"recipe": "lungo",
"task": {
"id": <task id>

  }
}



We call this approach “naïve” not because it's wrong; on the contrary,

that's quite a logical “default” solution if  you don't know yet (or don't

understand yet) how your API will look like. The problem with this

approach lies in its speculativeness: it doesn't re�ect the subject area's

organization.

An experienced developer in this case must ask: what options do exist?

how should we really determine the readiness of  the beverage? If  it turns

out that comparing volumes is the only working method to tell whether

the beverage is ready, then all the speculations above are wrong. You may

safely include readiness-by-volume detection into your interfaces since no

other methods exist. Before abstracting something we need to learn what

exactly we're abstracting.

In our example let's assume that we have studied co�ee machines' API

specs, and learned that two device types exist:

Co�ee machines capable of  executing programs coded in the

�rmware; the only customizable options are some beverage

parameters, like the desired volume, a syrup �avor, and a kind of

milk

Co�ee machines with built-in functions, like “grind speci�ed co�ee

volume,” “shed the speci�ed amount of  water,” etc.; such co�ee

machines lack “preparation programs,” but provide access to

commands and sensors.

To be more speci�c, let's assume those two kinds of  co�ee machines

provide the following physical API.

Co�ee machines with pre-built programs:



// Returns the list of
// available programs
GET /programs
→
{
// a program identifier
"program": 1,
// coffee type
"type": "lungo"

}

// Starts an execution 
// of the specified program
// and returns the execution status
POST /execute
{
"program": 1,
"volume": "200ml"

}
→
{
// A unique identifier 
// of the execution
"execution_id": "01-01",
// An identifier of the program
"program": 1,
// The requested beverage volume
"volume": "200ml"

}

// Cancels the current program
POST /cancel

// Returns the execution status.
// The response format is the same 
// as in the `POST /execute` method
GET /execution/{id}/status

NB: This API violates a number of  design principles, starting with a

lack of  versioning; it's described in such a manner because of  two

reasons: (1) to demonstrate how to design a more convenient API, (2)

in the real life, you will really get something like that from vendors,

and this API is actually quite a sane one.



Co�ee machines with built-in functions:

// Returns the list of
// available functions
GET /functions
→
{
"functions": [

    {
// One of the available
// operation types:
// * set_cup
// * grind_coffee
// * pour_water
// * discard_cup
"type": "set_cup",
// Arguments for the operation:
// * volume — a volume of a cup, 
//     coffee, or water
"arguments": ["volume"]

    },
    …
  ]
}

// Takes arguments values
// and starts executing a function
POST /functions
{
"type": "set_cup",
"arguments": [{ 
"name": "volume", 
"value": "300ml"

  }]
}



// Returns the state of the sensors
GET /sensors
→
{
"sensors": [

    {
// Possible values:
// * cup_volume
// * ground_coffee_volume
// * cup_filled_volume
"type": "cup_volume",
"value": "200ml"

    },
    …
  ]
}

NB: The example is intentionally �ctitious to model the situation

described above: to determine beverage readiness you have to

compare the requested volume with volume sensor readings.

Now the picture becomes more apparent: we need to abstract co�ee

machine API calls so that the “execution level” in our API provides general

functions (like beverage readiness detection) in a uni�ed form. We should

also note that these two co�ee machine API kinds belong to di�erent

abstraction levels themselves: the �rst one provides a higher-level API

than the second one. Therefore, a “branch” of  our API working with the

second-kind machines will be deeper.

The next step in abstraction level separating is determining what

functionality we're abstracting. To do so, we need to understand the tasks

developers solve at the “order” level and learn what problems they face if

our interim level is missing.

�. Obviously, the developers desire to create an order uniformly: list

high-level order properties (beverage kind, volume, and special

options like syrup or milk type), and don't think about how the

speci�c co�ee machine executes it.



�. Developers must be able to learn the execution state: is the order

ready? If  not, when can they expect it to be ready (and is there any

sense to wait in case of  execution errors)?

�. Developers need to address the order's location in space and time —

to explain to users where and when they should pick the order up.

�. Finally, developers need to run atomic operations, like canceling

orders.

Note, that the �rst-kind API is much closer to developers' needs than the

second-kind API. An indivisible “program” is a way more convenient

concept than working with raw commands and sensor data. There are only

two problems we see in the �rst-kind API:

Absence of  explicit “programs” to “recipes” relation. A program

identi�er is of  no use to developers since there is a “recipe” concept.

Absence of  an explicit “ready” status.

But with the second-kind API, it's much worse. The main problem we

foresee is the absence of  “memory” for actions being executed. The

functions and sensors API is totally stateless, which means we don't even

understand who called a function being currently executed, when, or to

what order it relates.

So we need to introduce two abstraction levels.

�. Execution control level, which provides a uniform interface to

indivisible programs. “Uniform interface” means here that,

regardless of  a co�ee machine's kind, developers may expect:

Statuses and other high-level execution parameters

nomenclature (for example, estimated preparation time or

possible execution errors) being the same;

Methods nomenclature (for example, order cancellation

method) and their behavior being the same.



�. Program runtime level. For the �rst-kind API, it will provide just a

wrapper for existing programs API; for the second-kind API, the

entire “runtime” concept is to be developed from scratch by us.

What does this mean in a practical sense? Developers will still be creating

orders, dealing with high-level entities only:

POST /v1/orders
{
"coffee_machine",
"recipe": "lungo",
"volume": "800ml"

}
→
{ "order_id" }

The POST /orders handler checks all order parameters, puts a hold of  the

corresponding sum on the user's credit card, forms a request to run, and

calls the execution level. First, a correct execution program needs to be

fetched:

POST /v1/program-matcher
{ "recipe", "coffee-machine" }
→
{ "program_id" }

Now, a�er obtaining the correct program identi�er, the handler runs the

program:



POST /v1/programs/{id}/run
{
"order_id",
"coffee_machine_id",
"parameters": [

    {
"name": "volume",
"value": "800ml"

    }
  ]
}
→
{ "program_run_id" }

Please note that knowing the co�ee machine API kind isn't required at all;

that's why we're making abstractions! We could possibly make the

interfaces more speci�c by implementing di�erent run and match

endpoints for di�erent co�ee machines:

POST /v1/program-matcher/{api_type}

POST /v1/{api_type}/programs/{id}/run

This approach has some bene�ts, like the possibility to provide di�erent

sets of  parameters, speci�c to the API kind. But we see no need for such

fragmentation. The run method handler is capable of  extracting all the

program metadata and performing one of  two actions:

Call the POST /execute physical API method, passing the internal

program identi�er for the �rst API kind

Initiate runtime creation to proceed with the second API kind.

Out of  general considerations, the runtime level for the second-kind API

will be private, so we are more or less free in implementing it. The easiest

solution would be to develop a virtual state machine that creates a

“runtime” (i.e. , a stateful execution context) to run a program and control

its state.



POST /v1/runtimes
{ 
"coffee_machine", 
"program", 
"parameters"

}
→
{ "runtime_id", "state" }

The program here would look like that:

{
"program_id",
"api_type",
"commands": [

    {
"sequence_id",
"type": "set_cup",
"parameters"

    },
    …
  ]
}

And the state like that:



{
// The `runtime` status:
// * "pending" — awaiting execution
// * "executing" — performing a command
// * "ready_waiting" — the beverage is ready
// * "finished" — all operations are done
"status": "ready_waiting",
// Command being currently executed.
// Similar to line numbers 
// in computer programs
"command_sequence_id",
// How the execution concluded:
// * "success" — the beverage 
//      prepared and taken
// * "terminated" — the execution aborted
// * "technical_error" — a preparation error
// * "waiting_time_exceeded" — beverage 
//      prepared, but not taken; 
//      timed out then disposed
"resolution": "success",
// The values of all variables,
// including the state of the sensors
"variables"

}

NB: When implementing the orders → match → run → runtimes call

sequence, we have two options:

Either POST /orders handler requests the data regarding the recipe,

the co�ee machine model, and the program on its own, and forms a

stateless request that contains all necessary data (API kind, command

sequence, etc.)

Or the request contains only data identi�ers, and the next handler in

the chain will request pieces of  data it needs via some internal APIs.

Both variants are plausible and the selection between them depends on

implementation details.



Abstraction Levels Isolation

A crucial quality of  properly separated abstraction levels (and therefore a

requirement to their design) is a level isolation restriction: only adjacent

levels may interact. If  “jumping over” is needed in the API design, then

clearly mistakes were made.

Returning to our example, how would retrieving the order status work? To

obtain a status the following call chain is to be performed:

A user initiates a call to the GET /v1/orders method.

The orders handler completes operations on its level of  responsibility

(e.g. , checks user authorization), �nds the program_run_id identi�er

and performs a call to the runs/{program_run_id} endpoint.

The runs endpoint completes operations corresponding to its level

(e.g. , checks the co�ee machine API kind) and, depending on the API

kind, proceeds with one of  two possible execution branches:

Either calls the GET /execution/status method of  the physical

co�ee machine API, gets the co�ee volume, and compares it to

the reference value or

Invokes the GET /v1/runtimes/{runtime_id} method to obtain

the state.status and converts it to the order status.

In the case of  the second-kind API, the call chain continues: the GET

/runtimes handler invokes the GET /sensors method of  the physical

co�ee machine API and performs some manipulations with the data,

like comparing the cup / ground co�ee / shed water volumes with the

reference ones, and changing the state and the status if  needed.

NB: The term “call chain” shouldn't be taken literally. Each abstraction

level may be organized di�erently in a technical sense. For example:

There might be explicit proxying of  calls down the hierarchy



There might be a cache at each level, which is updated upon receiving

a callback call or an event. In particular, a low-level runtime

execution cycle obviously must be independent of  upper levels, which

implies renewing its state in the background and not waiting for an

explicit call.

Note what happens here: each abstraction level wields its own status (i.e. ,

order, runtime, and sensors status respectively) formulated in subject area

terms corresponding to this level. Forbidding “jumping over” results in the

necessity to spawn statuses at each level independently.

Now let's examine how the order cancel operation �ows through our

abstraction levels. In this case, the call chain will look like this:

A user initiates a call to the POST /v1/orders/{id}/cancel method.

The method handler completes operations on its level of

responsibility:

Checks the authorization

Resolves money issues (e.g. , whether a refund is needed)

Finds the program_run_id identi�er and calls the

runs/{program_run_id}/cancel method.

The runs/cancel handler completes operations on its level of

responsibility and, depending on the co�ee machine API kind,

proceeds with one of  two possible execution branches:

Calls the POST /execution/cancel method of  a physical co�ee

machine API

Or invokes the POST /v1/runtimes/{id}/terminate method.

In the second case, the call chain continues as the terminate handler

operates its internal state:

Changes the resolution to "terminated"

�uns the "discard_cup" command.



Handling state-modifying operations like the cancel operation requires

more advanced abstraction-level juggling skills compared to non-

modifying calls like the GET /status method. There are two important

moments to consider:

�. At each abstraction level the idea of  “order canceling” is

reformulated:

At the orders level, this action splits into several “cancels” of

other levels: you need to cancel money holding and cancel order

execution

At the second API kind, physical level the “cancel” operation

itself  doesn't exist; “cancel” means “executing the discard_cup

command,” which is quite the same as any other command.

The interim API level is needed to make this transition between

di�erent level “cancels” smooth and rational without jumping

over canyons.

�. From a high-level point of  view, canceling an order is a terminal

action since no further operations are possible. From a low-level

point of  view, processing continues until the cup is discarded, and

then the machine is to be unlocked (i.e. , new runtimes creation

allowed). It's an execution control level's task to couple those two

states, outer (the order is canceled) and inner (the execution

continues).

It might seem like forcing the abstraction levels isolation is redundant and

makes interfaces more complicated. In fact, it is. It's essential to

understand that �exibility, consistency, readability, and extensibility come

with a price. One may construct an API with zero overhead, essentially

just providing access to the co�ee machine's microcontrollers. However

using such an API would be a disaster for a developer, not to mention the

inability to extend it.



Separating abstraction levels is �rst of  all a logical procedure: how we

explain to ourselves and developers what our API consists of. The

abstraction gap between entities exists objectively, no matter what

interfaces we design. Our task is just to sort this gap into levels explicitly.

The more implicitly abstraction levels are separated (or worse — blended

into each other), the more complicated your API's learning curve is, and

the worse the code that uses it will be.

The Data Flow

One useful exercise that allows us to examine the entire abstraction

hierarchy is to exclude all the particulars and construct a data �ow chart,

either on paper or in our head. This chart shows what data is �owing

through your API entities, and how it's being altered at each step.

This exercise doesn't just help but also allows us design really large APIs

with huge entity nomenclatures. Human memory isn't boundless; any

project which grows extensively will eventually become too big to keep the

entire entity hierarchy in mind. But it's usually possible to keep in mind

the data �ow chart, or at least keep a much larger portion of  the hierarchy.

What data �ow do we have in our co�ee API?

�. It starts with the sensors data, e.g. , volumes of  co�ee  / water  / cups.

This is the lowest data level we have, and here we can't change

anything.

�. A continuous sensors data stream is being transformed into discrete

command execution statuses, injecting new concepts which don't

exist within the subject area. A co�ee machine API doesn't provide a

“co�ee is being poured” or a “cup is being set” notion. It's our so�ware

that treats incoming sensor data and introduces new terms: if  the

volume of  co�ee or water is less than the target one, then the process

isn't over yet. If  the target value is reached, then this synthetic status

is to be switched, and the next command is executed. It is important



to note that we don't calculate new variables out of  sensor data: we

need to create a new dataset �rst, a context, an “execution program”

comprising a sequence of  steps and conditions, and �ll it with initial

values. If  this context is missing, it's impossible to understand what's

happening with the machine.

�. Having logical data about the program execution state, we can (again

via creating a new high-level data context) merge two di�erent data

streams from two di�erent kinds of  APIs into a single stream, which

provides in a uni�ed form the data regarding executing a beverage

preparation program with logical variables like the recipe, volume,

and readiness status.

Each API abstraction level, therefore corresponds to some data �ow

generalization and enrichment, converting low-level (and in fact useless to

end users) context terms into higher-level context terms.

We may also traverse the tree backward.

�. At the order level, we set its logical parameters: recipe, volume,

execution place and possible status set.

�. At the execution level, we read the order-level data and create a

lower-level execution context: the program as a sequence of  steps,

their parameters, transition rules, and initial state.

�. At the runtime level, we read the target parameters (which operation

to execute, and what the target volume is) and translate them into

co�ee machine API microcommands and statuses for each command.

Also, if  we take a deeper look at the “bad” decision (forcing developers to

determine the actual order status on their own), being discussed at the

beginning of  this chapter, we could notice a data �ow collision there:

On one hand, in the order context “leaked” physical data (beverage

volume prepared) is injected, stirring abstraction levels irreversibly



On the other hand, the order context itself  is de�cient: it doesn't

provide new meta-variables non-existent at the lower levels (the

order status, in particular), doesn't initialize them, and doesn't set the

game rules.

We will discuss data contexts in more detail in Section II. Here we will just

state that data �ows and their transformations might be and must be

examined as a speci�c API facet, which helps us separate abstraction levels

properly and check if  our theoretical concepts work as intended.



Chapter 12. Isolating Responsibility Areas

In the previous chapter, we concluded that the hierarchy of  abstractions in

our hypothetical project would comprise:

The user level (the entities formulated in terms understandable by

users and acted upon by them: orders, co�ee recipes)

The program execution control level (the entities responsible for

transforming orders into machine commands)

The runtime level for the second API kind (the entities describing the

command execution state machine).

We are now to de�ne each entity's responsibility area: what's the

reasoning for keeping this entity within our API boundaries? What

operations are applicable to the entity directly (and which are delegated to

other objects)? In fact, we are to apply the “why”-principle to every single

API entity.

To do so, we must iterate all over the API and formulate in subject area

terms what every object is. Let us remind that the abstraction levels

concept implies that each level is some interim subject area per se; a step

we take in the journey from describing a task in terms belonging to the

�rst connected context (“a lungo ordered by a user”) to terms belonging to

the second connected context (“a command performed by a co�ee

machine”).

As for our �ctional example, it would look as follows.

�. User-level entities.

An order describes some logical unit in app-user interaction. An

order might be:

Created

Checked for its status

Retrieved



Canceled.

A recipe describes an “ideal model” of  a co�ee beverage type,

i.e. , its customer properties. A recipe is an immutable entity that

can only be read.

A coffee-machine is a model of  a real-world device. We must be

able to retrieve the co�ee machine's geographical location and

the options it supports from this model (which will be discussed

below).

�. Program execution control-level entities.

A program describes a general execution plan for a co�ee

machine. Programs can only be read.

The programs/matcher entity couples a recipe and a program,

which in fact means retrieving a dataset needed to prepare a

speci�c recipe on a speci�c co�ee machine.

The programs/run entity describes a single fact of  running a

program on a co�ee machine. A run might be:

Initialized (created)

Checked for its status

Canceled.

�. �untime-level entities.

A runtime describes a speci�c execution data context, i.e. , the

state of  each variable. A runtime can be:

Initialized (created)

Checked for its status

Terminated.

If  we look closely at the entities, we may notice that each entity turns out

to be a composite. For example, a program operates high-level data (recipe

and coffee-machine), enhancing them with its subject area terms

(program_run_id for instance). This is totally �ne as connecting contexts is

what APIs do.



Use Case Scenarios

At this point, when our API is in general clearly outlined and dra�ed, we

must put ourselves in the developer's shoes and try writing code. Our task

is to look at the entity nomenclature and make some guesses regarding

their future usage.

So, let us imagine we've got a task to write an app for ordering co�ee based

on our API. What code would we write?

Obviously, the �rst step is to o�er a choice to the user, to make them point

out what they want. And this very �rst step reveals that our API is quite

inconvenient. There are no methods allowing for choosing something.

Developers have to implement these steps:

Retrieve all possible recipes from the GET /v1/recipes endpoint

Retrieve a list of  all available co�ee machines from the GET

/v1/coffee-machines endpoint

Write code that traverses all this data.

If  we try writing pseudocode, we will get something like this:

// Retrieve all possible recipes
let recipes = 
  api.getRecipes();
// Retrieve a list of 
// all available coffee machines
let coffeeMachines = 
  api.getCoffeeMachines();
// Build a spatial index
let coffeeMachineRecipesIndex = 
buildGeoIndex(recipes, coffeeMachines);

// Select coffee machines 
// matching user's needs
let matchingCoffeeMachines = 
  coffeeMachineRecipesIndex.query(
    parameters, { "sort_by": "distance" }
  );
// Finally, show offers to the user
app.display(matchingCoffeeMachines);



As you see, developers are to write a lot of  redundant code (to say nothing

about the complexity of  implementing spatial indexes). Besides, if  we take

into consideration our Napoleonic plans to cover all co�ee machines in the

world with our API, then we need to admit that this algorithm is just a

waste of  computational resources on retrieving lists and indexing them.

The necessity of  adding a new endpoint for searching becomes obvious. To

design such an interface we must imagine ourselves being UX designers,

and think about how an app could try to arouse users' interest. Two

scenarios are evident:

Display all cafes in the vicinity and the types of  co�ee they o�er (a

“service discovery” scenario) — for new users or just users with no

speci�c preferences

Display nearby cafes where a user could order a particular type of

co�ee — for users seeking a certain beverage type.

Then our new interface would look like this:

POST /v1/offers/search
{
// optional
"recipes": ["lungo", "americano"],
"position": <geographical coordinates>,
"sort_by": [

    { "field": "distance" }
  ],
"limit": 10

}
→
{
"results": [

    { 
"coffee_machine", 
"place", 
"distance", 
"offer"

    }
  ],
"cursor"

}

Here:



An offer is a marketing bid: on what conditions a user could have the

requested co�ee beverage (if  speci�ed in the request), or some kind of

marketing o�er — prices for the most popular or interesting products

(if  no speci�c preference was set).

A place is a spot (café, restaurant, street vending machine) where the

co�ee machine is located. We never introduced this entity before, but

it's quite obvious that users need more convenient guidance to �nd a

proper co�ee machine than just geographical coordinates.

NB: We could have enriched the existing /coffee-machines endpoint

instead of  adding a new one. Although this decision looks less

semantically viable, coupling di�erent modes of  listing entities in one

interface, by relevance and by order, is usually a bad idea because these

two types of  rankings imply di�erent features and usage scenarios.

Furthermore, enriching the search with “o�ers” pulls this functionality out

of  the coffee-machines namespace: the fact of  getting o�ers to prepare

speci�c beverages in speci�c conditions is a key feature for users, with

specifying the co�ee machine being just a part of  an o�er. In reality, users

rarely care about co�ee machine models.

NB: Having the coffee_machine_id in the interface is to some extent

violating the abstraction separation principle. It should be organized in a

more complex way: co�ee shops should somehow map incoming orders

against available co�ee machines, and only the type of  the co�ee machine

(if  a co�ee shop really operates several of  them) is something meaningful

in the context of  order creation. However, we deliberately simpli�ed our

study by making a co�ee machine selectable in the API to keep our API

example readable.

Coming back to the code developers write, it would now look like that:

// Searching for offers
// matching a user's intent
let offers = api.search(parameters);
// Display them to a user
app.display(offers);



Helpers

Methods similar to the newly invented offers/search one are called

helpers. The purpose of  their existence is to generalize known API usage

scenarios and facilitate their implementation. By “facilitating,” we mean

not only reducing wordiness (getting rid of  “boilerplates”) but also helping

developers avoid common problems and mistakes.

For instance, let's consider the problem of  the monetary value of  an order.

Our search function returns some “o�ers” with prices. However, the price

is volatile; co�ee could cost less during “happy hours,” for example.

Developers could make a mistake three times while implementing this

functionality:

Cache search results on a client device for too long (as a result, the

price will always be outdated).

Contrary to the previous point, call the search endpoint excessively

just to actualize prices, thus overloading the network and the API

servers.

Create an order with an invalid price (thereby deceiving a user,

displaying one sum, and debiting another).

To solve the third problem we could demand that the displayed price be

included in the order creation request and return an error if  it di�ers from

the actual one. (In fact, any API working with money must do so.) However,

this solution does not help with the �rst two problems, and also

deteriorates the user experience. Displaying the actual price is always a

much more convenient behavior than displaying errors upon pressing the

“place an order” button.

One solution is to provide a special identi�er to an o�er. This identi�er

must be speci�ed in an order creation request:



{
"results": [

    {
"coffee_machine", 
"place", 
"distance",
"offer": {
"id",
"price",
"currency_code",
// Date and time 
// when the offer expires
"valid_until"

      }
    }
  ],
"cursor"

}

By doing so we're not only helping developers grasp the concept of  getting

the relevant price but also solving a UX task of  informing users about

“happy hours.”

As an alternative, we could split the endpoints: one for searching, and one

for obtaining o�ers. The second endpoint would only be needed to

actualize prices if  necessary.

Error Handling

And one more step towards making developers' lives easier: what would an

“invalid price” error look like?

POST /v1/orders
{ "offer_id", … }
→ 409 Conflict
{ "message": "Invalid price" }

Formally speaking, this error response is su�cient: users get the “Invalid

price” message, and they have to repeat the order. But from a UX point of

view, this would be a terrible decision: the user hasn't made any mistakes,

and this message isn't helpful at all.



The main rule of  error interfaces in APIs is that an error response must

help a client understand what to do with the error. An error response's

content must address the following questions:

�. Which party is the source of  the problem: the client or the server? For

example, HTTP APIs traditionally employ the 4xx status codes to

indicate client problems and 5xx to indicate server problems (with the

exception of  the 404 code, which is an uncertainty status).

�. If  the error is caused by the server, is there any sense in repeating the

request? If  yes, then when?

�. If  the error is caused by the client, is it resolvable or not?

For example, the invalid price error is resolvable: a client could obtain

a new price o�er and create a new order with it. But if  the error

occurred because of  a mistake in the client code, then eliminating the

cause is impossible, and there is no need to make the user press the

“place an order” button again: this request will never succeed.

NB: Here and throughout we indicate resolvable problems with the

409 Conflict code and unresolvable ones with the 400 Bad Request

code.

�. If  the error is resolvable then what kind of  problem is it? Obviously,

application engineers couldn't resolve a problem they are unaware of.

For every resolvable problem, developers must write some code (re-

obtaining the o�er in our case), so there must be a list of  possible

error reasons and the corresponding �elds in the error response to

tell one problem from another.

�. If  passing invalid values in di�erent parameters arises the same kind

of  error, then how to learn which parameter value is wrong exactly?

�. Finally, if  some parameter value is unacceptable, then what values

are acceptable?

In our case, the price mismatch error should look like this:



409 Conflict
{
// Error kind
"reason": "offer_invalid",
"localized_message":
"Something went wrong.↵

     Try restarting the app."
"details": {
// What's wrong exactly?
// Which validity checks failed?
"checks_failed": [
"offer_lifetime"

    ]
  }
}

A�er receiving this error, a client should check the error's kind (“some

problem with the o�er”) and the speci�c error reason (“order lifetime

expired”), and send the o�er retrieval request again. If  the checks_failed

�eld indicated a di�erent error reason (for example, the o�er isn't bound

to the speci�ed user), client actions would be di�erent (re-authorize the

user, then get a new o�er). If  there was no error handler for this speci�c

reason, a client should show the localized_message to the user and

invoke the standard error recovery procedure.

It is also worth mentioning that unresolvable errors are useless to a user at

the time of  the error occurrence (since the client couldn't react

meaningfully to unknown errors). Still, providing extended error data is

not excessive as a developer will read it while �xing the issue in their code.



Decomposing Interfaces. The “7±2” Rule

From our own API development experience, we can tell without a doubt

that the greatest �nal interface design mistake (and the greatest

developer's pain accordingly) is the excessive overloading of  entities'

interfaces with �elds, methods, events, parameters, and other attributes.

Meanwhile, there is the “Golden �ule” of  interface design (applicable not

only to APIs but almost to anything): humans can comfortably keep 7±2

entities in short-term memory. Manipulating a larger number of  chunks

complicates things for most humans. The rule is also known as Miller's

Law.

NB. The law shouldn't be taken literally, as its direct applicability to human

cognition in general and so�ware engineering in particular is quite

controversial. Still, many in�uential works (such as the foundational

research by Victor Basili, Lionel Briand, and Walcelio Melo  and its

numerous follow-ups by other authors) claim that an increased number of

methods in classes and analogous metrics indicate poor code quality.

While the exact numbers are debatable, we envision the “7±2” rule as good

guidance.

The only possible method of  overcoming this law is decomposition.

Entities should be grouped under a single designation at every concept

level of  the API so that developers never have to operate on more than a

reasonable amount of  entities (let's say, ten) at a time.

Let's take a look at the co�ee machine search function response in our API.

To ensure an adequate UX of  the app, quite bulky datasets are required:

1

2



{
"results": [{
// Coffee machine data
"coffee_machine_id", "coffee_machine_type",
"coffee_machine_brand",
// Place data
"place_name": "The Chamomile",
"place_location_latitude",
"place_location_longitude",
"place_open_now", "working_hours",
// Walking route parameters
"walking_distance", "walking_time",
// How to find the place
"location_tip",
// Offers
"offers": [{
// Recipe data
"recipe", "recipe_name",
"recipe_description",
// Order parameters
"volume",
// Offer data
"offer_id", "offer_valid_until",
"price": "19.00",
"localized_price": 
"Just $19 for a large coffee cup",

"currency_code", "estimated_waiting_time"
    }, …]
  }, …]
}

This approach is regretfully quite common and could be found in almost

every API. Fields are mixed into one single list and o�en pre�xed to

indicate the related ones.

In this situation, we need to split this structure into data domains by

grouping �elds that are logically related to a single subject area. In our

case, we may identify at least 7 data clusters:

Data regarding the place where the co�ee machine is located

Properties of  the co�ee machine itself

Route data

Recipe data

Order options

O�er data



Pricing data.

Let's group them together:

{
"results": [{
// Place data
"place": { "name", "location" },
// Coffee machine properties
"coffee-machine": { "id", "brand", "type" },
// Route data
"route": { 
"distance", "duration", "location_tip"

    },
"offers": [{
// Recipe data
"recipe": { "id", "name", "description" },
// Order options
"options": { "volume" },
// Offer metadata
"offer": { "id", "valid_until" },
// Pricing
"pricing": { 
"currency_code", "price", 
"localized_price"

      },
"estimated_waiting_time"

    }, …]
  }, …]
}

Such a decomposed API is much easier to read than a long list of  di�erent

attributes. Furthermore, it's probably better to group even more entities in

advance. For example, a place and a route could be nested �elds under a

synthetic location property, or offer and pricing �elds might be

combined into some generalized object.

It is important to say that readability is achieved not only by merely

grouping the entities. Decomposing must be performed in such a manner

that a developer, while reading the interface, instantly understands, “Here

is the place description of  no interest to me right now, no need to traverse

deeper.” If  the data �elds needed to complete some action are scattered all

over di�erent composites, the readability doesn't improve and even

degrades.



Proper decomposition also helps with extending and evolving an API.

We'll discuss the subject in Section III.

References

Miller's Law

en.wikipedia.org/wiki/Working_memory#Capacity

Basili, V. , Briand, L. , Melo, W. (1996) A validation of  object-oriented

design metrics as quality indicators

ieeexplore.ieee.org/document/544352

1

2

https://en.wikipedia.org/wiki/Working_memory#Capacity
https://ieeexplore.ieee.org/document/544352/


Chapter 13. Describing Final Interfaces

When all entities, their responsibilities, and their relations to each other

are de�ned, we proceed to the development of  the API itself. We need to

describe the objects, �elds, methods, and functions nomenclature in

detail. In this chapter, we provide practical advice on making APIs usable

and understandable.

One of  the most important tasks for an API developer is to ensure that

code written by other developers using the API is easily readable and

maintainable. Remember that the law of  large numbers always works

against you: if  a concept or call signature can be misunderstood, it will be

misunderstood by an increasing number of  partners as the API's

popularity grows.

NB: The examples in this chapter are meant to illustrate the consistency

and readability problems that arise during API development. We do not

provide speci�c advice on designing REST APIs (such advice will be given

in the corresponding section of  this book) or programming languages'

standard libraries. The focus is o the idea, not speci�c syntax.

An important assertion number one:

1. Rules Must Not Be Applied Unthinkingly

�ules are simply formulated generalizations based on one's experience.

They are not to be applied unconditionally, and they do not make thinking

redundant. Every rule has a rational reason to exist. If  your situation does

not justify following a rule, then you should not do it.

This idea applies to every concept listed below. If  you end up with an

unusable, bulky, or non-obvious API because you followed the rules, it's a

motivation to revise the rules (or the API).



It is important to understand that you can always introduce your own

concepts. For example, some frameworks intentionally reject paired

set_entity  / get_entity methods in favor of  a single entity() method

with an optional argument. The crucial part is being systematic in

applying the concept. If  it is implemented, you must apply it to every

single API method or at the very least develop a naming rule to distinguish

such polymorphic methods from regular ones.

2. Explicit Is Always Better Than Implicit

The entity name should explicitly indicate what the entity does and what

side e�ects to expect when using it.

Bad:

// Cancels an order
order.canceled = true;

It is not obvious that a state �eld might be modi�ed, and that this

operation will cancel the order.

Better:

// Cancels an order
order.cancel();

Bad:

// Returns aggregated statistics
// since the beginning of time
orders.getStats()



Even if  the operation is non-modifying but computationally expensive,

you should explicitly indicate that, especially if  clients are charged for

computational resource usage. Furthermore, default values should not be

set in a way that leads to maximum resource consumption.

Better:

// Calculates and returns
// aggregated statistics
// for a specified period of time
orders.calculateAggregatedStats({
  begin_date,
  end_date
});

Try to design function signatures that are transparent about what

the function does, what arguments it takes, and what the outcome is.

When reading code that works with your API, it should be easy to

understand what it does without referring to the documentation.

Two important implications:

1.1. If  the operation is modifying, it must be obvious from the signature. In

particular, there should not be modifying operations named

getSomething or using the GET HTTP verb.

1.2. If  your API's nomenclature contains both synchronous and

asynchronous operations, then (a)synchronicity must be apparent from

signatures, or a naming convention must exist.

3. Specify Which Standards Are Used

Regrettably, humanity is unable to agree on even the most trivial things,

like which day starts the week, let alone more sophisticated standards.



Therefore, always specify exactly which standard is being used. Exceptions

are possible if  you are 100% sure that only one standard for this entity

exists in the world and every person on Earth is totally aware of  it.

Bad: "date": "11/12/2020" — there are numerous date formatting

standards. It is unclear which number represents the day and which

number represents the month.

Better: "iso_date": "2020-11-12".

Bad: "duration": 5000 — �ve thousand of  what?

Better:

"duration_ms": 5000

or

"duration": "5000ms"

or

"iso_duration": "PT5S"

or

"duration": {"unit": "ms", "value": 5000}.

One particular implication of  this rule is that money sums must always be

accompanied by a currency code.

It is also worth mentioning that in some areas the situation with standards

is so spoiled that no matter what you do, someone will be upset. A

“classical” example is the order of  geographical coordinates (latitude-

longitude vs longitude-latitude). Unfortunately, the only e�ective method

to address the frustration in such cases is the Serenity Notepad which will

be discussed in the corresponding chapter.

4. Entities Must Have Concrete Names

Avoid using single amoeba-like words, such as “get,” “apply,” “make,” etc.

Bad: user.get() — it is di�cult to guess what is actually returned.



Better: user.get_id().

5. Don't Spare the Letters

In the 21st century, there's no need to shorten entities' names.

Bad: order.getTime() — it is unclear what time is actually returned:

order creation time, order preparation time, order waiting time, or

something else.

Better: order.getEstimatedDeliveryTime().

Bad:

// Returns a pointer to the first occurrence
// in str1 of any of the characters
// that are part of str2
strpbrk(str1, str2)

Possibly, the author of  this API thought that the abbreviation pbrk would

mean something to readers, but that is clearly mistaken. It is also hard to

understand from the signature which string (str1 or str2) represents a

character set.

Better:

str_search_for_characters(
  str,
  lookup_character_set
)

— though it is highly debatable whether this function should exist at all; a

feature-rich search function would be much more convenient. Also,

shortening a string to str bears no practical sense, unfortunately being a

common practice in many subject areas.



NB: Sometimes �eld names are shortened or even omitted (e.g. , a

heterogeneous array is passed instead of  a set of  named �elds) to reduce

the amount of  tra�c. In most cases, this is absolutely meaningless as the

data is usually compressed at the protocol level.

6. Naming Implies Typing

A �eld named recipe must be of  type Recipe. A �eld named recipe_id

must contain a recipe identi�er that can be found within the Recipe entity.

The same applies to basic types. Arrays must be named in the plural form

or as collective nouns, e.g. , objects, children. If  it is not possible, it is

better to add a pre�x or a post�x to avoid ambiguity.

Bad: GET /news — it is unclear whether a speci�c news item is returned,

or a list of  them.

Better: GET /news-list.

Similarly, if  a Boolean value is expected, entity naming must describe a

qualitative state, e.g. , is_ready, open_now.

Bad: "task.status": true

— statuses are not explicitly binary. Additionally, such an API is not

extendable.

Better: "task.is_finished": true.

Speci�c platforms imply speci�c additions to this rule depending on the

�rst-class citizen types they provide. For example, JSON doesn't have a

Date object type, so dates are typically passed as numbers or strings. In

this case, it's convenient to mark dates somehow, for example, by adding

_at or _date post�xes, i.e. created_at, occurred_at.



If  an entity name is a polysemantic term itself, which could confuse

developers, it is better to add an extra pre�x or post�x to avoid

misunderstanding.

Bad:

// Returns a list of 
// coffee machine builtin functions
GET /coffee-machines/{id}/functions

The word “function” is ambiguous. It might refer to built-in functions, but

it could also mean “a piece of  code,” or a state (machine is functioning).

Better:

GET /v1/coffee-machines/{id}↵
  /builtin-functions-list

7. Matching Entities Must Have Matching Names and Behave Alike

Bad: begin_transition / stop_transition

— The terms begin and stop don't match; developers will have to refer to

the documentation to �nd a paired method.

Better: either begin_transition  / end_transition or

start_transition / stop_transition.

Bad:

// Find the position of the first occurrence
// of a substring in a string
strpos(haystack, needle)
// Replace all occurrences
// of the search string 
// with the replacement string
str_replace(needle, replace, haystack)



Several rules are violated:

The usage of  an underscore is not consistent

Functionally close methods have di�erent needle/haystack argument

ordering

The �rst function �nds the �rst occurrence while the second one

�nds all occurrences, and there is no way to deduce that fact from the

function signatures.

Improving these function signatures is le� as an exercise for the reader.

8. Avoid Double Negations

Bad: "dont_call_me": false

— humans are bad at perceiving double negation and can make mistakes.

Better: "prohibit_calling": true or "avoid_calling": true

— this is easier to read. However, you should not deceive yourself: it is still

a double negation, even if  you've found a “negative” word without a

“negative” pre�x.

It is also worth mentioning that mistakes in using De Morgan's laws  are

even more common. For example, if  you have two �ags:

GET /coffee-machines/{id}/stocks
→
{
"has_beans": true,
"has_cup": true

}

The condition “co�ee might be prepared” would look like has_beans &&

has_cup — both �ags must be true. However, if  you provide the negations

of  both �ags:

1



{
"no_beans": false,
"no_cup": false

}

— then developers will have to evaluate the !no_beans && !no_cup �ag

which is equivalent to the !(no_beans || no_cup) condition. In this

transition, people tend to make mistakes. Avoiding double negations helps

to some extent, but the best advice is to avoid situations where developers

have to evaluate such �ags.

9. Avoid Implicit Type Casting

This advice contradicts the previous one, ironically. When developing

APIs you frequently need to add a new optional �eld with a non-empty

default value. For example:

let orderParams = {
contactless_delivery: false

};
let order = api.createOrder(
  orderParams
);

This new contactless_delivery option isn't required, but its default

value is true. A question arises: how should developers discern the explicit

intention to disable the option (false) from not knowing if  it exists (the

�eld isn't set)? They would have to write something like:

let value = orderParams.contactless_delivery;
if (Type(value) == 'Boolean' && value == false) {
  … 
}



This practice makes the code more complicated, and it's quite easy to make

mistakes resulting in e�ectively treating the �eld as the opposite. The

same can happen if  special values (e.g. , null or -1) are used to denote

value absence.

If  the protocol does not support resetting to default values as a �rst-class

citizen, the universal rule is to make all new Boolean �ags false by default.

Better

let orderParams = {
force_contact_delivery: true

};
let order = api.createOrder(
  orderParams
);

If  a non-Boolean �eld with a specially treated absence of  value is to be

introduced, then introduce two �elds.

Bad:

// Creates a user
POST /v1/users
{ … }
→
// Users are created with a monthly
// spending limit set by default
{
"spending_monthly_limit_usd": "100",

  …
}
// To cancel the limit null value is used
PUT /v1/users/{id}
{ 
"spending_monthly_limit_usd": null,

  …
}

Better



POST /v1/users
{
// true — user explicitly cancels
//   monthly spending limit
// false — limit isn't canceled
//   (default value)
"abolish_spending_limit": false,
// Non-required field
// Only present if the previous flag
// is set to false
"spending_monthly_limit_usd": "100",

  …
}

NB: The contradiction with the previous rule lies in the necessity of

introducing “negative” �ags (the “no limit” �ag), which we had to rename

to abolish_spending_limit. Though it's a decent name for a negative �ag,

its semantics is still not obvious, and developers will have to read the

documentation. This is the way.

10. Declare Technical Restrictions Explicitly

Every �eld in your API comes with restrictions: the maximum allowed text

length, the size of  attached documents, the allowed ranges for numeric

values, etc. O�en, describing those limits is neglected by API developers —

either because they consider it obvious, or because they simply don't know

the boundaries themselves. This is of  course an antipattern: not knowing

the limits automatically implies that partners' code might stop working at

any moment due to reasons they don't control.

Therefore, �rst, declare the boundaries for every �eld in the API without

any exceptions, and, second, generate proper machine-readable errors

describing the exact boundary that was violated should such a violation

occur.

The same reasoning applies to quotas as well: partners must have access to

the statistics on which part of  the quota they have already used, and the

errors in the case of  exceeding quotas must be informative.



11. All Requests Must Be Limited

The restrictions should apply not only to �eld sizes but also to list sizes or

aggregation intervals.

Bad: getOrders() — what if  a user made a million orders?

Better: getOrders({ limit, parameters }) — there must be a cap on

the amount of  processed and returned data. This also implies providing

the possibility to re�ne the query if  a partner needs more data than what

is allowed to be returned in one request.

12. Describe the Retry Policy

One of  the most signi�cant performance-related challenges that nearly

any API developer encounters, regardless of  whether the API is internal or

public, is service denial due to a �ood of  re-requests. Temporary backend

API issues, such as increased response times, can lead to complete server

failure if  clients rapidly repeat requests a�er receiving an error or a

timeout, resulting in generating a signi�cantly larger workload than usual

in a short period of  time.

The best practice in such a situation is to require clients to retry API

endpoints with increasing intervals (for example, the �rst retry occurs

a�er one second, the second a�er two seconds, the third a�er four

seconds, and so on, up to a maximum of, let's say, one minute). Of  course,

in the case of  a public API, no one is obliged to comply with such a

requirement, but its presence certainly won't make things worse for you.

At the very least, some partners will read the documentation and follow

your recommendations.

Moreover, you can develop a reference implementation of  the retry policy

in your public SDKs and ensure it is correctly implemented in open-source

modules for your API.



13. Count the Amount of Traffic

Nowadays the amount of  tra�c is rarely taken into account as the Internet

connection is considered unlimited almost universally. However, it is not

entirely unlimited: with some degree of  carelessness, it's always possible

to design a system that generates an uncomfortable amount of  tra�c even

for modern networks.

There are three obvious reasons for in�ating network tra�c:

Clients query the data too frequently or cache it too little

No data pagination is provided

No limits are set on the data �elds, or too large binary data (graphics,

audio, video, etc.) is transmitted.

All these problems must be addressed by setting limitations on �eld sizes

and properly decomposing endpoints. If  an entity comprises both

“lightweight” data (such as the name and description of  a recipe) and

“heavy” data (such as the promotional picture of  a beverage which might

easily be a hundred times larger than the text �elds), it's better to split

endpoints and pass only a reference to the “heavy” data (e.g. , a link to the

image). This will also allow for setting di�erent cache policies for di�erent

kinds of  data.

As a useful exercise, try modeling the typical lifecycle of  a partner's app's

main functionality (e.g. , making a single order) to count the number of

requests and the amount of  tra�c it requires. It might turn out that the

high number of  requests or increased network tra�c consumption is due

to a mistake in the design of  state change noti�cation endpoints. We will

discuss this issue in detail in the “Bidirectional Data Flow” chapter of  “The

API Patterns” section of  this book.



14. No Results Is a Result

If  a server processes a request correctly and no exceptional situation

occurs, there should be no error. Unfortunately, the antipattern of

throwing errors when no results are found is widespread.

Bad

POST /v1/coffee-machines/search
{
"query": "lungo",
"location": <customer's location>

}
→ 404 Not Found
{
"localized_message":
"No one makes lungo nearby"

}

The response implies that a client made a mistake. However, in this case,

neither the customer nor the developer made any mistakes. The client

cannot know beforehand whether lungo is served in this location.

Better:

POST /v1/coffee-machines/search
{
"query": "lungo",
"location": <customer's location>

}
→ 200 OK
{
"results": []

}

This rule can be summarized as follows: if  an array is the result of  the

operation, then the emptiness of  that array is not a mistake, but a correct

response. (Of  course, this applies if  an empty array is semantically

acceptable; an empty array of  coordinates, for example, would be a

mistake.)



NB: This pattern should also be applied in the opposite case. If  an array of

entities is an optional parameter in the request, the empty array and the

absence of  the �eld must be treated di�erently. Let's consider the example:

// Finds all coffee recipes
// that contain no milk
POST /v1/recipes/search
{ "filter": { "no_milk": true } }
→ 200 OK
{
"results": [

    { "recipe": "espresso", … }, 
    { "recipe": "lungo", … }
  ]
}
// Finds offers for
// the given recipes
POST /v1/offers/search
{ 
"location", 
"recipes": ["espresso", "lungo"]

}

Now let's imagine that the �rst request returned an empty array of  results

meaning there are no known recipes that satisfy the condition. Ideally, the

developer would have expected this situation and installed a guard to

prevent the call to the o�er search function in this case. However, we can't

be 100% sure they did. If  this logic is missing, the application will make

the following call:

POST /v1/offers/search
{
"location",
"recipes": []

}

O�en, the endpoint implementation ignores the empty recipe array and

returns a list of  o�ers as if  no recipe �lter was supplied. In our case, it

means that the application seemingly ignores the user's request to show

only milk-free beverages, which we consider unacceptable behavior.

Therefore, the response to such a request with an empty array parameter



should either be an error or an empty result.

15. Validate Inputs

The decision of  whether to use an exception or an empty response in the

previous example depends directly on what is stated in the contract. If  the

speci�cation speci�es that the recipes parameter must not be empty, an

error should be generated (otherwise, you would violate your own spec).

This rule applies not only to empty arrays but to every restriction speci�ed

in the contract. “Silently” �xing invalid values rarely makes practical

sense.

Bad:

POST /v1/offers/search
{
"location": {
"longitude": 20,
"latitude": 100

  }
}
→ 200 OK
{
// Offers for the
// [0, 90] point
"offers"

}

As we can see, the developer somehow passed the wrong latitude value

(100 degrees). Yes, we can “�x” it by reducing it to the closest valid value,

which is 90 degrees, but who bene�ts from this? The developer will never

learn about this mistake, and we doubt that co�ee o�ers in the Northern

Pole vicinity are relevant to users.

Better:



POST /v1/coffee-machines/search
{
"location": {
"longitude": 20,
"latitude": 100

  }
}
→ 400 Bad Request
{
// Error description

}

It is also useful to proactively notify partners about behavior that appears

to be a mistake:

POST /v1/coffee-machines/search
{
"location": {
"latitude": 0,
"longitude": 0

  }
}
→
{
"results": [],
"warnings": [{
"type": "suspicious_coordinates",
"message": "Location [0, 0]↵

      is probably a mistake"
  }, {

"type": "unknown_field",
"message": "unknown field:↵

      `force_convact_delivery`. Did you↵
      mean `force_contact_delivery`?"
  }]
}

If  it is not possible to add such notices, we can introduce a debug mode or

strict mode in which notices are escalated:



POST /v1/coffee-machines/search↵
?strict_mode=true

{
"location": {
"latitude": 0,
"longitude": 0

  }
}
→ 400 Bad Request
{
"errors": [{
"type": "suspicious_coordinates",
"message": "Location [0, 0]↵

      is probably a mistake"
  }],
  …
}

If  the [0, 0] coordinates are not an error, it makes sense to allow for

manual bypassing of  speci�c errors:

POST /v1/coffee-machines/search↵
?strict_mode=true↵
&disable_errors=suspicious_coordinates

16. Default Values Must Make Sense

Setting default values is one of  the most powerful tools that help avoid

verbosity when working with APIs. However, these values should help

developers rather than hide their mistakes.

Bad:



POST /v1/coffee-machines/search
{
"recipes": ["lungo"]
// User location is not set

}
→
{
"results": [
// Results for some default
// location

  ]
}

Formally speaking, having such behavior is feasible: why not have a

“default geographical coordinates” concept? However, in reality, such

policies of  “silently” �xing mistakes lead to absurd situations like “the null

island” — the most visited place in the world.  The more popular an API

becomes, the higher the chances that partners will overlook these edge

cases.

Better:

POST /v1/coffee-machines/search
{
"recipes": ["lungo"]
// User location is not set

}
→ 400 Bad Request
{
// Error description

}

17. Errors Must Be Informative

It is not enough to simply validate inputs; providing proper descriptions

of  errors is also essential. When developers write code, they encounter

problems, sometimes quite trivial, such as invalid parameter types or

boundary violations. The more convenient the error responses returned by

your API, the less time developers will waste struggling with them, and the

more comfortable working with the API will be for them.

2



Bad:

POST /v1/coffee-machines/search
{
"recipes": ["lngo"],
"position": {
"latitude": 110,
"longitude": 55

  }
}
→ 400 Bad Request
{}

— of  course, the mistakes (typo in "lngo", wrong coordinates) are obvious.

But the handler checks them anyway, so why not return readable

descriptions?

Better:



{
"reason": "wrong_parameter_value",
"localized_message":
"Something is wrong.↵

     Contact the developer of the app.",
"details": {
"checks_failed": [

      {
"field": "recipe",
"error_type": "wrong_value",
"message":
"Unknown value: 'lngo'.↵

           Did you mean 'lungo'?"
      },
      {

"field": "position.latitude",
"error_type": 
"constraint_violation",

"constraints": {
"min": -90,
"max": 90

        },
"message":
"'position.latitude' value↵

            must fall within↵
            the [-90, 90] interval"
      }
    ]
  }
}

It is also a good practice to return all detectable errors at once to save

developers time.

18. Return Unresolvable Errors First

POST /v1/orders
{
"recipe": "lngo",
"offer"

}
→ 409 Conflict
{ "reason": "offer_expired" }



// Request repeats
// with the renewed offer
POST /v1/orders
{
"recipe": "lngo",
"offer"

}
→ 400 Bad Request
{ "reason": "recipe_unknown" }

— what was the point of  renewing the o�er if  the order cannot be created

anyway? For the user, it will look like meaningless e�orts (or meaningless

waiting) that will ultimately result in an error regardless of  what they do.

Yes, maintaining error priorities won't change the result — the order still

cannot be created. However, �rst, users will spend less time (also make

fewer mistakes and contribute less to the error metrics) and second,

diagnostic logs for the problem will be much easier to read.

19. Prioritize Significant Errors

If  the errors under consideration are resolvable (i.e. , the user can take

some actions and still get what they need), you should �rst notify them of

those errors that will require more signi�cant state updates.

Bad:



POST /v1/orders
{
"items": [{
"item_id": "123",
"price": "0.10"

  }]
}
→
409 Conflict
{
// Error: while the user
// was making an order,
// the product price has changed
"reason": "price_changed",
"details": [{
"item_id": "123",
"actual_price": "0.20"

  }]
}

// Repeat the request
// to get the actual price
POST /v1/orders
{
"items": [{
"item_id": "123",
"price": "0.20"

  }]
}
→
409 Conflict
{
// Error: the user already has
// too many parallel orders,
// creating a new one 
// is prohibited
"reason": "order_limit_exceeded",
"localized_message":
"Order limit exceeded"

}

— what was the point of  showing the price changed dialog, if  the user still

can't make an order, even if  the price is right? When one of  the concurrent

orders has �nished, and the user is able to commit another one, prices,

item availability, and other order parameters will likely need another

correction.



20. Analyze Potential Error Deadlocks

In complex systems, it might happen that resolving one error leads to

another one, and vice versa.

// Create an order
// with paid delivery
POST /v1/orders
{
"items": 3,
"item_price": "3000.00"
"currency_code": "MNT",
"delivery_fee": "1000.00",
"total": "10000.00"

}
→ 409 Conflict
// Error: if the order sum
// is more than 9000 tögrögs, 
// delivery must be free
{
"reason": "delivery_is_free"

}

// Create an order
// with free delivery
POST /v1/orders
{
"items": 3,
"item_price": "3000.00"
"currency_code": "MNT",
"delivery_fee": "0.00",
"total": "9000.00"

}
→ 409 Conflict
// Error: the minimal order sum
// is 10000 tögrögs
{
"reason": "below_minimal_sum",
"currency_code": "MNT",
"minimal_sum": "10000.00"

}



You may note that in this setup the error can't be resolved in one step: this

situation must be elaborated on, and either order calculation parameters

must be changed (discounts should not be counted against the minimal

order sum), or a special type of  error must be introduced.

21. Specify Caching Policies and Lifespans of Resources

In modern systems, clients usually have their own state and almost

universally cache results of  requests. Every entity has some period of

autonomous existence, whether session-wise or long-term. So it's highly

desirable to provide clari�cations: it should be understandable how the

data is supposed to be cached, if  not from operation signatures, but at least

from the documentation.

Let's emphasize that we understand “cache” in the extended sense: which

variations of  operation parameters (not just the request time, but other

variables as well) should be considered close enough to some previous

request to use the cached result?

Bad:

// Returns lungo prices including
// delivery to the specified location
GET /price?recipe=lungo↵
  &longitude={longitude}↵
  &latitude={latitude}
→
{ "currency_code", "price" }

Two questions arise:

Until when is the price valid?

In what vicinity of  the location is the price valid?

Better: you may use standard protocol capabilities to denote cache

options, such as the Cache-Control header. If  you need caching in both

temporal and spatial dimensions, you should do something like this:



GET /price?recipe=lungo↵
  &longitude={longitude}↵
  &latitude={latitude}
→
{
"offer": {
"id",
"currency_code",
"price",
"conditions": {
// Until when the price is valid
"valid_until",
// In what vicinity 
// the price is valid
// * city
// * geographical object
// * …
"valid_within"

    }
  }
}

NB: Sometimes, developers set very long caching times for immutable

resources, spanning a year or even more. It makes little practical sense as

the server load will not be signi�cantly reduced compared to caching for,

let's say, one month. However, the cost of  a mistake increases

dramatically: if  wrong data is cached for some reason (for example, a 404

error), this problem will haunt you for the next year or even more. We

would recommend selecting reasonable cache parameters based on how

disastrous invalid caching would be for the business.

22. Keep the Precision of Fractional Numbers Intact

If  the protocol allows, fractional numbers with �xed precision (such as

money sums) must be represented as a specially designed type like

Decimal or its equivalent.

If  there is no Decimal type in the protocol (for instance, JSON doesn't have

one), you should either use integers (e.g. , apply a �xed multiplier) or

strings.



If  converting to a �oat number will certainly lead to a loss of  precision (for

example, if  we translate “20 minutes” into hours as a decimal fraction), it's

better to either stick to a fully precise format (e.g. , use 00:20 instead of

0.33333…), or provide an SDK to work with this data. As a last resort,

describe the rounding principles in the documentation.

23. All API Operations Must Be Idempotent

Let us remind the reader that idempotency is the following property:

repeated calls to the same function with the same parameters won't

change the resource state. Since we are primarily discussing client-server

interaction, repeating requests in case of  network failure is not something

exceptional but a common occurrence.

If  an endpoint's idempotency can not be naturally assured, explicit

idempotency parameters must be added in the form of  a token or a

resource version.

Bad:

// Creates an order
POST /orders

A second order will be produced if  the request is repeated!

Better:

// Creates an order
POST /v1/orders
X-Idempotency-Token: <token>

The client must retain the X-Idempotency-Token in case of  automated

endpoint retrying. The server must check whether an order created with

this token already exists.



Alternatively:

// Creates order draft
POST /v1/orders/drafts
→
{ "draft_id" }

// Confirms the draft
PUT /v1/orders/drafts↵
  /{draft_id}/confirmation
{ "confirmed": true }

Creating order dra�s is a non-binding operation as it doesn't entail any

consequences, so it's �ne to create dra�s without the idempotency token.

Con�rming dra�s is a naturally idempotent operation, with the draft_id

serving as its idempotency key.

Another alternative is implementing optimistic concurrency control,

which we will discuss in the “Synchronization Strategies” chapter.

It is also worth mentioning that adding idempotency tokens to naturally

idempotent handlers is not meaningless. It allows distinguishing between

two situations:

The client did not receive the response due to network issues and is

now repeating the request.

The client made a mistake by posting con�icting requests.

Consider the following example: imagine there is a shared resource,

characterized by a revision number, and the client tries to update it.

POST /resource/updates
{
"resource_revision": 123
"updates"

}



The server retrieves the actual resource revision and �nds it to be 124. How

should it respond correctly? Returning the 409 Conflict code will force

the client to try to understand the nature of  the con�ict and somehow

resolve it, potentially confusing the user. It is also unwise to fragment the

con�ict-resolving algorithm and allow each client to implement it

independently.

The server can compare request bodies, assuming that identical requests

mean retrying. However, this assumption might be dangerously wrong

(for example if  the resource is a counter of  some kind, repeating identical

requests is routine).

Adding the idempotency token (either directly as a random string or

indirectly in the form of  dra�s) solves this problem.

POST /resource/updates
X-Idempotency-Token: <token>
{
"resource_revision": 123
"updates"

}
→ 201 Created

— the server determined that the same token was used in creating revision

124 indicating the client is retrying the request.

Or:

POST /resource/updates
X-Idempotency-Token: <token>
{
"resource_revision": 123
"updates"

}
→ 409 Conflict

— the server determined that a di�erent token was used in creating

revision 124 indicating an access con�ict.



Furthermore, adding idempotency tokens not only �xes the issue but also

enables advanced optimizations. If  the server detects an access con�ict, it

could attempt to resolve it by “rebasing” the update like modern version

control systems do, and return a 200 OK instead of  a 409 Conflict. This

logic dramatically improves the user experience, being fully backward-

compatible, and helps avoid code fragmentation for con�ict resolution

algorithms.

However, be warned: clients are bad at implementing idempotency tokens.

Two common problems arise:

You can't really expect clients to generate truly random tokens. They

might share the same seed or simply use weak algorithms or entropy

sources. Therefore constraints must be placed on token checking,

ensuring that tokens are unique to the speci�c user and resource

rather than globally.

Client developers might misunderstand the concept and either

generate new tokens for each repeated request (which degrades the

UX but is otherwise harmless) or conversely use a single token in

several requests (which is not harmless at all and could lead to

catastrophic disasters; this is another reason to implement the

suggestion in the previous clause). Writing an SDK and/or detailed

documentation is highly recommended.

24. Don't Invent Security Practices

If  the author of  this book were given a dollar each time he had to

implement an additional security protocol invented by someone, he would

be retired by now. API developers' inclination to create new signing

procedures for requests or complex schemes of  exchanging passwords for

tokens is both obvious and meaningless.



First, there is no need to reinvent the wheel when it comes to security-

enhancing procedures for various operations. All the algorithms you need

are already invented, just adopt and implement them. No self-invented

algorithm for request signature checking can provide the same level of

protection against a Manipulator-in-the-middle (MitM) attack  as a

mutual TLS authentication with certi�cate pinning.

Second, assuming oneself  to be an expert in security is presumptuous and

dangerous. New attack vectors emerge daily, and staying fully aware of  all

actual threats is a full-time job. If  you do something di�erent during

workdays, the security system you design will contain vulnerabilities that

you have never heard about — for example, your password-checking

algorithm might be susceptible to a timing attack  or your webserver

might be vulnerable to a request splitting attack.

The OWASP Foundation compiles a list of  the most common

vulnerabilities in APIs every year,  which we strongly recommend

studying. We also recommend a de�nitive work by Andrew Ho�man  for

everyone interested in Web security.

And just in case: all APIs must be provided over TLS 1.2 or higher

(preferably 1.3).

25. Help Partners With Security

It is equally important to provide interfaces to partners that minimize

potential security problems for them.

Bad:

// Allows partners to set
// descriptions for their beverages
PUT /v1/partner-api/{partner-id}↵
  /recipes/lungo/info
"<script>alert(document.cookie)</script>"

3

4

5

6

7

8



// Returns the desciption
GET /v1/partner-api/{partner-id}↵
  /recipes/lungo/info
→
"<script>alert(document.cookie)</script>"

Such an interface directly creates a stored XSS vulnerability that potential

attackers might exploit. While it is the partners' responsibility to sanitize

inputs and display them safely, the large numbers work against you: there

will always be inexperienced developers who are unaware of  this

vulnerability or haven't considered it. In the worst case, this stored XSS

might a�ect all API consumers, not just a speci�c partner.

In these situations, we recommend, �rst, sanitizing the data if  it appears

potentially exploitable (e.g. if  it is meant to be displayed in the UI and/or is

accessible through a direct link). Second, limiting the blast radius so that

stored exploits in one partner's data space can't a�ect other partners. If

the functionality of  unsafe data input is still required, the risks must be

explicitly addressed:

Better (though not perfect):

// Allows for setting a potentially
// unsafe description for a beverage
PUT /v1/partner-api/{partner-id}↵
  /recipes/lungo/info
X-Dangerously-Disable-Sanitizing: true
"<script>alert(document.cookie)</script>"

// Returns the potentially
// unsafe description
GET /v1/partner-api/{partner-id}↵
  /recipes/lungo/info
X-Dangerously-Allow-Raw-Value: true
→
"<script>alert(document.cookie)</script>"

One important �nding is that if  you allow executing scripts via the API,

always prefer typed input over unsafe input:



Bad:

POST /v1/run/sql
{
// Passes the full script
"query": "INSERT INTO data (name)↵

    VALUES ('Robert');↵
    DROP TABLE students;--')"
}

Better:

POST /v1/run/sql
{
// Passes the script template
"query": "INSERT INTO data (name)↵

    VALUES (?)",
// and the parameters to set
"values": [
"Robert');↵

     DROP TABLE students;--"
  ]
}

In the second case, you will be able to sanitize parameters and avoid SQL

injections in a centralized manner. Let us remind the reader that

sanitizing must be performed with state-of-the-art tools, not self-written

regular expressions.

26. Use Globally Unique Identifiers

It's considered good practice to use globally unique strings as entity

identi�ers, either semantic (e.g. , "lungo" for beverage types) or random

ones (e.g. , UUID-4 ). It might turn out to be extremely useful if  you need to

merge data from several sources under a single identi�er.

9



In general, we tend to advise using URN-like identi�ers, e.g. urn:order:

<uuid> (or just order:<uuid>). That helps a lot in dealing with legacy

systems with di�erent identi�ers attached to the same entity. Namespaces

in URNs help to quickly understand which identi�er is used and if  there is

a usage mistake.

One important implication: never use increasing numbers as external

identi�ers. Apart from the abovementioned reasons, it allows counting

how many entities of  each type there are in the system. Your competitors

will be able to calculate the precise number of  orders you have each day,

for example.

27. Stipulate Future Restrictions

With the growth of  API popularity, it will inevitably become necessary to

introduce technical means of  preventing illicit API usage, such as

displaying captchas, setting honeypots, raising “too many requests”

exceptions, installing anti-DDoS proxies, etc. All these things cannot be

done if  the corresponding errors and messages were not described in the

docs from the very beginning.

You are not obliged to actually generate those exceptions, but you might

stipulate this possibility in the docs. For example, you might describe the

429 Too Many Requests error or captcha redirect but implement the

functionality when it's actually needed.

It is extremely important to leave room for multi-factor authentication

(such as TOTP, SMS, or 3D-secure-like technologies) if  it's possible to make

payments through the API. In this case, it's a must-have from the very

beginning.



NB: This rule has an important implication: always separate endpoints

for di�erent API families. (This may seem obvious, but many API

developers fail to follow it.) If  you provide a server-to-server API, a service

for end users, and a widget to be embedded in third-party apps — all these

APIs must be served from di�erent endpoints to allow for di�erent

security measures (e.g. , mandatory API keys, forced login, and solving

captcha respectively).

28. No Bulk Access to Sensitive Data

If  it's possible to access the API users' personal data, bank card numbers,

private messages, or any other kind of  information that, if  exposed, might

seriously harm users, partners, and/or the API vendor, there must be no

methods for bulk retrieval of  the data, or at least there must be rate

limiters, page size restrictions, and ideally, multi-factor authentication in

front of  them.

O�en, making such o�oads on an ad-hoc basis, i.e. , bypassing the API, is

a reasonable practice.

29. Localization and Internationalization

All endpoints must accept language parameters (e.g. , in the form of  the

Accept-Language header), even if  they are not currently being used.

It is important to understand that the user's language and the user's

jurisdiction are di�erent things. Your API working cycle must always store

the user's location. It might be stated either explicitly (requests contain

geographical coordinates) or implicitly (initial location-bound request

initiates session creation which stores the location) — but no correct

localization is possible in the absence of  location data. In most cases

reducing the location to just a country code is enough.



The thing is that lots of  parameters that potentially a�ect data formats

depend not on language but on the user's location. To name a few: number

formatting (integer and fractional part delimiter, digit groups delimiter),

date formatting, the �rst day of  the week, keyboard layout, measurement

units system (which might be non-decimal!), etc. In some situations, you

need to store two locations: the user's residence location and the user's

“viewport.” For example, if  a US citizen is planning a European trip, it's

convenient to show prices in the local currency but measure distances in

miles and feet.

Sometimes explicit location passing is not enough since there are lots of

territorial con�icts in the world. How the API should behave when user

coordinates lie within disputed regions is a legal matter, regretfully. The

author of  this book once had to implement a “state A territory according to

state B o�cial position” concept.

Important: mark a di�erence between localization for end users and

localization for developers. In the examples above, the

localized_message �eld is meant for the user; the app should show it if

no speci�c handler for this error exists in the client code. This message

must be written in the user's language and formatted according to the

user's location. But the details.checks_failed[].message is meant to be

read by developers examining the problem. So it must be written and

formatted in a manner that suits developers best — which usually means

“in English,” as English is a de facto standard in so�ware development.

It is worth mentioning that the localized_ pre�x in the examples is used

to di�erentiate messages to users from messages to developers. A concept

like that must be, of  course, explicitly stated in your API docs.

And one more thing: all strings must be UTF-8, no exclusions.



References

De Morgan's laws

en.wikipedia.org/wiki/De_Morgan's_laws

Hrala, J. Welcome to Null Island, The Most 'Visited' Place on Earth That

Doesn't Actually Exist

www.sciencealert.com/welcome-to-null-island-the-most-visited-place-that-doesn-t-exist

Manipulator-in-the-middle Attack

owasp.org/www-community/attacks/Manipulator-in-the-middle_attack

Madden, N. (2020), 11.4 Mutual TLS authentication

Timing Attack

en.wikipedia.org/wiki/Timing_attack

HTTP Request Splitting

capec.mitre.org/data/de�nitions/105.html

OWASP API Security Project

owasp.org/www-project-api-security

Ho�man, A. (2024), Web Application Security. Second Edition

Universally Unique Identi�er. Version 4 (random)

en.wikipedia.org/wiki/Universally_unique_identi�er#Version_4_(random)

1

2

3

4

5

6

7

8

9

https://en.wikipedia.org/wiki/De_Morgan's_laws
https://www.sciencealert.com/welcome-to-null-island-the-most-visited-place-that-doesn-t-exist
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://en.wikipedia.org/wiki/Timing_attack
https://capec.mitre.org/data/definitions/105.html
https://owasp.org/www-project-api-security/
https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)


Chapter 14. Annex to Section I. Generic API Example

Let's summarize the current state of  our API study.

1. Offer Search

POST /v1/offers/search
{
// optional
"recipes": ["lungo", "americano"],
"position": <geographical coordinates>,
"sort_by": [ { "field": "distance" } ],
"limit": 10

}
→
{
"results": [{
// Place data
"place": { "name", "location" },
// Coffee machine properties
"coffee-machine": { "id", "brand", "type" },
// Route data
"route": { 
"distance", "duration",  "location_tip"

    },
"offers": [{
// Recipe data
"recipe": 

        { "id", "name", "description" },
// Recipe specific options
"options": { "volume" },
// Offer metadata
"offer": { "id", "valid_until" },
// Pricing
"pricing": { 
"currency_code", "price", 
"localized_price"

      },
"estimated_waiting_time"

    }, …]
  }, …],
"cursor"

}



2. Working with Recipes

// Returns a list of recipes
// Cursor parameter is optional
GET /v1/recipes?cursor=<cursor>
→
{ "recipes", "cursor" }

// Returns the recipe by its id
GET /v1/recipes/{id}
→
{ 
"recipe_id", 
"name", 
"description"

}

3. Working with Orders

// Creates an order
POST /v1/orders
X-Idempotency-Token: <token>
{
"coffee_machine_id",
"currency_code",
"price",
"recipe": "lungo",
// Optional
"offer_id",
// Optional
"volume": "800ml"

}
→
{ "order_id" }

// Returns the order by its id
GET /v1/orders/{id}
→
{ "order_id", "status" }



// Cancels the order
POST /v1/orders/{id}/cancel

4. Working with Programs

// Returns an identifier of the program
// corresponding to specific recipe
// on specific coffee-machine
POST /v1/program-matcher
{ "recipe", "coffee-machine" }
→
{ "program_id" }

// Return program description
// by its id
GET /v1/programs/{id}
→
{
"program_id",
"api_type",
"commands": [

    {
"sequence_id",
"type": "set_cup",
"parameters"

    },
    …
  ]
}



5. Running Programs

// Runs the specified program
// on the specified coffee-machine
// with specific parameters
POST /v1/programs/{id}/run
X-Idempotency-Token: <token>
{
"order_id",
"coffee_machine_id",
"parameters": [

    {
"name": "volume",
"value": "800ml"

    }
  ]
}
→
{ "program_run_id" }

// Stops program running
POST /v1/runs/{id}/cancel

6. Managing Runtimes

// Creates a new runtime
POST /v1/runtimes
X-Idempotency-Token: <token>
{ 
"coffee_machine_id", 
"program_id", 
"parameters"

}
→
{ "runtime_id", "state" }



// Returns the state
// of the specified runtime
GET /v1/runtimes/{runtime_id}/state
{
"status": "ready_waiting",
// Command being currently executed
// (optional)
"command_sequence_id",
"resolution": "success",
"variables"

}

// Terminates the runtime
POST /v1/runtimes/{id}/terminate



SECTION II. THE API PATTERNS

Chapter 15. On Design Patterns in the API Context

The concept of  “patterns” in the �eld of  so�ware engineering was

introduced by Kent Beck and Ward Cunningham in 1987  and popularized

by “The Gang of  Four” (Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides) in their book “Design Patterns: Elements of  Reusable

Object-Oriented So�ware,” which was published in 1994.  According to

the most widespread de�nition, a so�ware design pattern is a “general,

reusable solution to a commonly occurring problem within a given

context.”

If  we talk about APIs, especially those to which developers are end users

(e.g. , frameworks or operating system interfaces), the classical so�ware

design patterns are well applicable to them. Indeed, many examples in the

previous Section of  this book are just about applying some design

patterns.

However, if  we try to extend this approach to include API development in

general (which, let us remind to the reader, is typically about building

interfaces to distributed systems), we will soon �nd that many typical API

design issues are high-level and can't be reduced to basic so�ware

patterns. Let's say, caching resources (and invalidating the cache) or

organizing paginated access are not covered in classical writings.

In this Section, we will specify those API design problems that we see as

the most important ones. We are not aiming to encompass every problem,

let alone every solution, and rather focus on describing approaches to

solving typical problems with their pros and cons. We do understand that

readers familiar with the works of  “The Gang of  Four,” Grady Booch, and

Martin Fowler might expect a more systematic approach and greater

depth of  outreach from a section called “The API Patterns,” and we

apologize to them in advance.

1

2



NB: The �rst such pattern we need to mention is the API-�rst approach to

so�ware engineering, which we described in the corresponding chapter.

The Fundamentals of Solving Typical API Design Problems

Before we proceed to the patterns, we need to understand �rst, how

developing APIs di�ers from developing other kinds of  so�ware. Below,

we will formulate three important concepts, which we will be referring to

in the subsequent chapters.

�. The more distributed and multi-faceted systems are built and the

more general-purpose channels of  communication are used, the

more errors occur in the process of  interaction. In the most

interesting case of  distributed many-layered client-server systems,

raising an exception on the side of  a client (like losing context as a

result of  app crash and restart), server (the pipeline of  executing a

query threw at some stage), communication channel (connection fully

or partially lost), or any other interim agent (intermediate web-server

hasn't got a response from backend and returned a gateway error) is a

norm of  life, and all systems must be designed in a manner that in a

case of  an exception of  any kind, API clients must be able to restore

their state and continue operating normally.

�. The more partners use the API, the more chance is that some of  the

mechanisms of  the expected work�ow are implemented wrongly. In

other words, not only genuine errors related to network or server

overload should be expected, but also logical ones caused by

improper API usage (and, in particular, there should be safeguards to

avoid errors in one partner's code leading to a denial of  service for

other partners).



�. Any part of  the system might introduce unpredictable latencies when

serving requests, and these latencies could be quite high, up to

seconds and tens of  seconds. Even if  you have full control over the

execution environment and network, client apps may hinder

themselves due to suboptimal code or execution on low-performing

or overloaded devices. As a result, it is important to ensure that

proper API design does not rely on critical operations being executed

quickly. This includes:

If  carrying out a task through the API requires making a

sequence of  calls, there should be a mechanism in place to

resume the operation from the current step if  needed, instead of

restarting it from the beginning.

Operations that a�ect shared resources should have locking

mechanisms in place for the duration of  the operation.

References

So�ware Design Pattern. History

en.wikipedia.org/wiki/So�ware_design_pattern#History

Gamma, E. , Helm, R. , Johnson, R. , Vlissides, J. (1994), Design Patterns.

Elements of  Reusable Object-Oriented So�ware

1

2

https://en.wikipedia.org/wiki/Software_design_pattern#History


Chapter 16. Authenticating Partners and Authorizing
API Calls

Before we proceed further to discussing technical matters, we feel obliged

to provide an overview of  the problems related to authorizing API calls

and authenticating clients. Based on the main principle that “an API serves

as a multiplier to both your opportunities and mistakes,” organizing

authorization and authentication (AA) is one of  the most important

challenges that any API vendor faces, especially when it comes to public

APIs. It is rather surprising that there is no standard approach to this

issue, as every big vendor develops its own interface to solve AA problems,

and these interfaces are o�en quite archaic.

If  we set aside implementation details (for which we strongly recommend

not reinventing the wheel and using standard techniques and security

protocols), there are basically two approaches to authorizing an API call:

Introducing a special “robot” type of  account into the system, and

carrying out the operations on behalf  of  the robot account.

Authorizing the caller system (backend or client application) as a

single entity, using API keys, signatures, or certi�cates for the

purpose of  authenticating such calls.

The di�erence between the two approaches lies in the access granularity:

If  an API client is making requests as a regular user of  the system,

then it can only perform operations allowed for a speci�c user, which

o�en means it might have access only to a partial dataset within the

API endpoint.

If  the caller system is authorized, it implies that it has full access to

the endpoint and can supply any parameters, i.e. , might operate the

full dataset exposed through the endpoint.



Therefore, the �rst approach is more granular (the robot might be a

“virtual employee” with access only to a limited dataset) and is a natural

choice for APIs that are supplemental to an existing service for end users

(and thus can reuse the existing AA solutions). However, this approach has

some disadvantages:

The need to develop a process for securely fetching authorization

tokens for the robot user (e.g. , via having a real user generate tokens

in the web UI), as regular login-password authentication (especially

multi-factored) is not well-suited for API clients.

The need to make exceptions for robot users in almost every security

protocol:

Robots might make many more requests per second than real

users and might perform several queries in parallel (possibly

from di�erent IP addresses located in di�erent availability

zones).

Robots do not accept cookies and cannot solve captchas.

Robots should not be logged out or have their token invalidated

(as it would impact the partner's business processes), so it is

usually necessary to invent speci�c long-lived tokens for robots

and/or token renewal procedures.

Finally, you may encounter signi�cant challenges if  you need to allow

robots to perform operations on behalf  of  other users (as you will

have to either expose this functionality to all users or, vice versa, hide

its existence from them).

If  the API is not about providing additional access to a service for end

users, it is usually much easier to opt for the second approach and

authorize clients with API keys. In this case, per-endpoint granularity can

be achieved (i.e. , allowing partners to regulate the set of  permitted

endpoints for a key), while developing more granular access can be much

more complex and because of  that rarely see implementations.



Both approaches can be morphed into each other (e.g. , allowing robot

users to perform operations on behalf  of  any other users e�ectively

becomes API key-based authorization; allowing binding of  a limited

dataset to an API key e�ectively becomes a user account), and there are

some hybrid systems in the wild (where the request must be signed with

both an API key and a user token).



Chapter 17. Synchronization Strategies

Let's proceed to the technical problems that API developers face. We begin

with the last one described in the introductory chapter: the distributed

nature of  modern so�ware that necessitates the problem of  synchronizing

shared states. Let us imagine that a user creates a request to order co�ee

through our API. While this request travels from the client to the co�ee

house and back, many things might happen. Consider the following chain

of  events:

�. The client sends the order creation request

�. Because of  network issues, the request propagates to the server very

slowly, and the client gets a timeout

Therefore, the client does not know whether the query was served or

not.

�. The client requests the current state of  the system and gets an empty

response as the initial request still hasn't reached the server:

let pendingOrders = await
api.getOngoingOrders(); // → []

�. The server �nally gets the initial request for creating an order and

serves it.

�. The client, being unaware of  this, tries to create an order anew.

As the operations of  reading the list of  ongoing orders and of  creating a

new order happen at di�erent moments of  time, we can't guarantee that

the system state hasn't changed in between. This might happen if  the

application backend state is replicated (i.e. , the second request reads data

from a di�erent node of  the data storage) or if  the customer uses two



client devices simultaneously. In other words, we encountered the classical

problem of  state synchronization in distributed systems. To solve this issue,

we need to select a consistency model  for our application and implement

some synchronization strategy.

As clients are your customers, it is highly desirable to provide them an API

with the highest degree of  robustness — strong consistency,  which

guarantees that all clients read the most recent writes. It is not universally

possible, and we will discuss relaxing this constraint in the following

chapters. However, with APIs the rule of  thumbs is: if  you can provide

strongly consistent interfaces, do it.

There are two main approaches to solving this problem: the pessimistic

one (implementing locks in the API) and the optimistic one (resource

versioning).

NB: Generally speaking, the best solution is not having the issue at all.

Let's say, if  your API is idempotent, the duplicating calls are not a problem.

However, in the real world, not every operation is idempotent; for

example, creating new orders is not. We might add mechanisms to prevent

automatic retries (such as client-generated idempotency tokens) but we

can't forbid users from just creating a second identical order.

1

2



API Locks

The �rst approach is to literally implement standard synchronization

primitives at the API level. Like this, for example:

let lock;
try {
// Capture the exclusive
// right to manipulate orders

  lock = await api.
acquireLock(ORDERS_ACCESS);

// Get the list of current orders
// known to the system
let pendingOrders = await

    api.getPendingOrders();
// If our order is absent,
// create it
if (pendingOrders.length == 0) {
let order = await api

      .createOrder(…)
  }
} catch (e) {
// Deal with errors

} finally {
// Unblock the resource
await lock.release();

}

This solution is quite similar to using mutexes to avoid race conditions in

multithreaded systems,  just exposed via a formal API. Rather

unsurprisingly, this approach sees very rare use in distributed client-

server APIs because of  the plethora of  related problems:

�. Waiting for acquiring a lock introduces new latencies to the

interaction that are hardly predictable and might potentially be quite

signi�cant.

�. The locks themselves [i.e. , the storage for lock identi�ers and its API]

constitute a separate subsystem of  its own and require additional

e�ort from the API vendor to implement it.

3



�. As it's partners who develop client code, we can't guarantee it works

with locks always correctly. Inevitably, “lost” locks will occur in the

system, and that means we need to provide some tools to partners so

they can �nd the problem and debug it.

�. A certain granularity of  locks is to be developed so that partners can't

a�ect each other. We are lucky if  there are natural boundaries for a

lock — for example, if  it's limited to a speci�c user in the speci�c

partner's system. If  we are not so lucky (let's say all partners share the

same user pro�le), we will have to develop even more complex

systems to deal with potential errors in the partners' code — for

example, introduce locking quotas.

Optimistic Concurrency Control

A less implementation-heavy approach is to develop an optimistic

concurrency control  system, i.e. , to require clients to pass a �ag proving they

know the actual state of  a shared resource.

// Retrieve the state
let orderState = 
await api.getOrderState();

// The version is a part
// of the state of the resource
let version = 
  orderState.latestVersion;
// An order might only be created
// if the resource version hasn't
// changed since the last read
try {
let task = await api

    .createOrder(version, …);
} catch (e) {
// If the version is wrong, i.e.,
// another client changed the
// resource state, an error occurs
if (Type(e) == INCORRECT_VERSION) {
// Which should be handled…

  }
}

4



NB: An attentive reader might note that the necessity to implement

locking has not disappeared: there must be a component in the system

that performs a locking read of  the resource version and its subsequent

change. It's not entirely true as synchronization strategies and strongly

consistent reading have disappeared from the public API. The distance

between the client that sets the lock and the server that processes it

became much smaller, and the entire interaction now happens in a

controllable environment, being free from the problems we've described

earlier.

Instead of  a version, the date of  the last modi�cation of  the resource

might be used (which is much less reliable as clocks are not ideally

synchronized across di�erent system nodes; at least save it with the

maximum possible precision!) or entity identi�ers (ETags).

The advantage of  optimistic concurrency control is therefore the

possibility to hide under the hood the complexity of  implementing locking

mechanisms. The disadvantage is that the versioning errors are no longer

exceptional situations — it's now a regular behavior of  the system.

Furthermore, client developers must implement working with them

otherwise the application might render inoperable as users will be

in�nitely creating an order with the wrong version.

NB: Which resource to select for making versioning is extremely

important. If  in our example we create a global system version that is

incremented a�er any order comes, users' chances to successfully create

an order will be close to zero.



References

See “Consistency model” · en.wikipedia.org/wiki/Consistency_model or

refer to Van Steen, M. , Tanenbaum A. (2024), 7.3 Client-centric consistency

models

See “Strong Consistency” · en.wikipedia.org/wiki/Strong_consistency or

refer to Gorton, I. (2022), Chapter 12. Strong Consistency

See “Lock” · en.wikipedia.org/wiki/Lock_(computer_science) or refer to

Stevens, W. R. (1990), Chapter 7. Mutexes and Condition Variables

See “Optimistic concurrency control” ·

en.wikipedia.org/wiki/Optimistic_concurrency_control or refer to

Kung, H. T. , Robinson, J. T. (1981)

1

2

3

4

https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/Strong_consistency
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Optimistic_concurrency_control


Chapter 18. Eventual Consistency

The approach described in the previous chapter is in fact a trade-o�: the

API performance issues are traded for “normal” (i.e. , expected)

background errors that happen while working with the API. This is

achieved by isolating the component responsible for controlling

concurrency and only exposing only revision tokens in the public API.

Still, the achievable throughput of  the API is limited as strong consistency

implies strict constraints on backend implementation.

In many situations, given the rate of  writes is much less than reads (as in

out case, when making two orders from two di�erent devices under one

account is rather an exceptional situation), it might make sense to stick

eventual consistency rather than the strict one.  The typical setup in Web

o�en involves having asynchronously replicated databases:

// Reading the state,
// possibly from a replica
let orderState = 
await api.getOrderState();

let version = 
  orderState.latestVersion;
try {
// The request handler will
// read the actual version
// from the master data
let task = await api

    .createOrder(version, …);
} catch (e) {
  …
}

As orders are created much more rarely than read, we might signi�cantly

increase the system performance if  we drop the requirement of  returning

the most recent state of  the resource from the state retrieval endpoints.

The versioning will help us avoid possible problems: creating an order will

still be impossible unless the client has the actual version. The client will

be able to ful�ll its request eventually when it �nally gets the actual data.

1



NB: Strictly speaking, in this example, we're referring to the “single-leader

replication” type of  eventual consistency: while reads might return

outdated data, writes are nevertheless strictly ordered, and the service that

physically makes writes can resolve the actual state of  the system. There is

also the “multi-leader replication” class of  systems, where there is no such

thing as “the actual state” or “the latest version,” as every leader replica

handles writes independently and concurrently — which, in our case,

means clients can always create duplicate orders, whatever precautions we

take. Typically, such systems are only used in the following cases:

The operations are naturally idempotent.

A certain percentage of  duplicate entities is acceptable.

There is a mechanism in place that always routes speci�c clients to

speci�c replicas, so concurrent con�icting requests to di�erent

leaders are not possible.

The curious reader may refer to Martin Kleppmann's work on the subject.

Choosing weak consistency instead of  a strict one, however, brings some

disadvantages. For instance, we might require partners to wait until they

get the actual resource state to make changes — but it is quite unobvious

for partners (and actually inconvenient) they must be prepared to wait for

changes they made themselves to propagate.

// Creates an order
let api = await api
  .createOrder(…)
// Returns a list of orders
let pendingOrders = await api.
getOngoingOrders(); // → []
// The list is empty

If  strict consistency is not guaranteed, the second call might easily return

an empty result as it reads data from a replica, and the newest order might

not have hit it yet.

2



An important pattern that helps in this situation is implementing the

“read-your-writes ” model: it guarantees that clients observe the changes

they have just made. In APIs, the read-your-writes strategy could be

implemented by by making clients pass some token that describes the last

change known to the client.

let der = await api
  .createOrder(…);
let pendingOrders = await api.
getOngoingOrders({

    …,
// Pass the identifier of the
// last operation made by
// the client
last_known_order_id: order.id

  })

Such a token might be:

An identi�er (or identi�ers) of  the last modifying operations carried

out by the client

The last known resource version (modi�cation date, ETag) known to

the client.

Upon getting the token, the server must check that the response (e.g. , the

list of  ongoing operations it returns) matches the token, i.e. , the eventual

consistency converged. If  it did not (the client passed the modi�cation

date / version / last order id newer than the one known to the server), one

of  the following policies or their combinations might be applied:

The server might repeat the request to the underlying DB or to the

other kind of  data storage in order to get the newest version

(eventually)

The server might return an error that requires the client to try again

later

3



The server queries the main node of  the DB, if  such a thing exists, or

otherwise initiates retrieving the master data.

The advantage of  this approach is client development convenience

(compared to the absence of  any guarantees): by preserving the version

token, client developers get rid of  the possible inconsistency of  the data

got from API endpoints. There are two disadvantages, however:

It is still a trade-o�  between system scalability and a constant in�ow

of  background errors:

If  you're querying master data or repeating the request upon the

version mismatch, the load on the master storage is increased in

poorly a predictable manner

If  you return a client error instead, the number of  such errors

might be considerable, and partners will need to write some

additional code to deal with the errors.

This approach is still probabilistic, and will only help in a limited

number of  use cases (to be discussed below).

There is also an important question regarding the default behavior of  the

server if  no version token was passed. Theoretically, in this case, master

data should be returned, as the absence of  the token might be the result of

an app crash and subsequent restart or corrupted data storage. However,

this implies an additional load on the master node.



Evaluating the Risks of Switching to Eventual Consistency

First, let us stress that you might choose the approach only in the case of

exposing new APIs. If  you're already providing an endpoint implementing

some consistency model, you can't just lower the consistency level (for

instance, introduce eventual consistency instead of  the strict one) even if

you never documented the behavior. This will be discussed in detail in the

“On the Waterline of  the Iceberg” chapter of  “The Backward

Compatibility” section of  this book.

Second, let us state another important assertion: the methods of  solving

architectural problems we're discussing in this section are probabilistic.

Abolishing strict consistency means that even if  all components of  the

system work perfectly, client errors will still occur. It might appear that

they could be simply ignored, but in reality, doing so means introducing

risks.

Imagine that because of  eventual consistency, users of  our API sometimes

cannot create orders with their �rst attempt. For example, a customer adds

a new payment method in the application, but their subsequent order

creation request is routed to a replica that hasn't yet received the

information regarding the newest payment method. As these two actions

(adding a bank card and making an order) o�en go in conjunction, there

will be a noticeable percentage of  errors — let's say, 1%. At this stage, we

could disregard the situation as it appears harmless: in the worst-case

scenario, the client will repeat the request.

But let's go a bit further and imagine there is an error in a new version of

the application, and 0.1% of  end users cannot make an order at all because

the client sends a wrong payment method identi�er. In the absence of  this

1% background noise of  consistency-bound errors, we would �nd the issue

very quickly. However, amidst this constant in�ow of  errors, identifying



problems like this one could be very challenging as it requires con�guring

monitoring systems to reliably exclude the data consistency errors, and

this could be very complicated or even impossible. The author of  this book,

in his job, has seen several situations when critical mistakes that a�ect a

small percentage of  users were not noticed for months.

Therefore, the task of  proactively lowering the number of  these

background errors is crucially important. We may try to reduce their

occurrence for typical usage pro�les.

NB: The “typical usage pro�le” stipulation is important: an API implies the

variability of  client scenarios, and API usage cases might fall into several

groups, each featuring quite di�erent error pro�les. The classical example

is client APIs (where it's an end user who makes actions and waits for

results) versus server APIs (where the execution time is per se not so

important — but let's say mass parallel execution might be). If  this

happens, it's a strong signal to make a family of  API products covering

di�erent usage scenarios, as we will discuss in “The API Services Lineup”

chapter of  “The API Product” section of  this book.

Let's return to the co�ee example, and imagine we implemented the

following scheme:

Optimistic concurrency control (through, let's say, the id of  the last

user's order)

The “read-your-writes” policy of  reading the order list (again with

passing the last known order id as a token)

Retrieving master data in the case the token is absent.

In this case, the order creation error might only happen in one of  the two

cases:

The client works with the data incorrectly (does not preserve the

identi�er of  the last order or the idempotency key while repeating

the request)



The client tries to create an order from two di�erent instances of  the

app that do not share the common state.

The �rst case means there is a bug in the partner's code; the second case

means that the user is deliberately testing the system's stability — which is

hardly a frequent case (or, let's say, the user's phone went o�  and they

quickly switched to a tablet — rather rare case as well, we must admit).

Let's now imagine that we dropped the third requirement — i.e. , returning

the master data if  the token was not provided by the client. We would get

the third case when the client gets an error:

The client application lost some data (restarted or corrupted), and the

user tries to replicate the last request.

NB: The repeated request might happen without any automation involved

if, let's say, the user got bored of  waiting, killed the app and manually re-

orders the co�ee again.

Mathematically, the probability of  getting the error is expressed quite

simply. It's the ratio between two durations: the time period needed to get

the actual state to the time period needed to restart the app and repeat the

request. (Keep in mind that the last failed request might be automatically

repeated on startup by the client.) The former depends on the technical

properties of  the system (for instance, on the replication latency, i.e. , the

lag between the master and its read-only copies) while the latter depends

on what client is repeating the call.

If  we talk about applications for end users, the typical restart time there is

measured in seconds, which normally should be much less than the

overall replication latency. Therefore, client errors will only occur in case

of  data replication problems / network issues / server overload.



If, however, we talk about server-to-server applications, the situation is

totally di�erent: if  a server repeats the request a�er a restart (let's say

because the process was killed by a supervisor), it's typically a millisecond-

scale delay. And that means that the number of  order creation errors will

be signi�cant.

As a conclusion, returning eventually consistent data by default is only

viable if  an API vendor is either ready to live with background errors or

capable of  making the lag of  getting the actual state much less than the

typical app restart time.

References

Van Steen, M. , Tanenbaum A. (2024), 7.2.2 Eventual consistency

Kleppmann, M. (2017), Chapter 5. Replication

See “Consistency Model. Read-Your-Writes Consistency” ·

en.wikipedia.org/wiki/Consistency_model#Read-your-

writes_consistency or refer to Van Steen, M. , Tanenbaum A. (2024), 7.3.3

Read your writes

1

2

3

https://en.wikipedia.org/wiki/Consistency_model#Read-your-writes_consistency
https://en.wikipedia.org/wiki/Consistency_model#Read-your-writes_consistency


Chapter 19. Asynchronicity and Time Management

Let's continue working with the previous example: the application

retrieves some system state upon start-up, perhaps not the most recent

one. What else does the probability of  collision depend on, and how can we

lower it?

We remember that this probability is equal to the ratio of  time periods:

getting an actual state versus starting an app and making an order. The

latter is almost out of  our control (unless we deliberately introduce

additional waiting periods in the API initialization function, which we

consider an extreme measure). Let's then talk about the former.

Our usage scenario looks like this:

let pendingOrders = await api.
getOngoingOrders();

if (pendingOrders.length == 0) {
let order = await api

    .createOrder(…);
}

// App restart happens here,
// and all the same requests
// are repeated
let pendingOrders = await api.
getOngoingOrders(); // → []

if (pendingOrders.length == 0) {
let order = await api

    .createOrder(…);
}

Therefore, we're trying to minimize the following interval: network

latency to deliver the createOrder call plus the time of  executing the

createOrder plus the time needed to propagate the newly created order to

the replicas. We don't control the �rst summand (but we might expect the

network latencies to be more or less constant during the session duration,



so the next getOngoingOrders call will be delayed for roughly the same

time period). The third summand depends on the infrastructure of  the

backend. Let's talk about the second one.

As we can see if  the order creation itself  takes a lot of  time (meaning that

it is comparable to the app restart time) then all our previous e�orts were

useless. The end user must wait until they get the server response back and

might just restart the app to make a second createOrder call. It is in our

best interest to ensure this never happens.

However, what we could do to improve this timing remains unclear.

Creating an order might indeed take a lot of  time as we need to carry out

necessary checks and wait for the payment gateway response and

con�rmation from the co�ee shop.

What could help us here is the asynchronous operations pattern. If  our

goal is to reduce the collision rate, there is no need to wait until the order

is actually created as we need to quickly propagate the knowledge that the

order is accepted for creation. We might employ the following technique:

create a task for order creation and return its identi�er, not the order itself.

let pendingOrders = await api.
getOngoingOrders();

if (pendingOrders.length == 0) {
// Instead of creating an order,
// put the task for the creation
let task = await api

    .putOrderCreationTask(…);
}

// App restart happens here,
// and all the same requests
// are repeated
let pendingOrders = await api.
getOngoingOrders(); 
// → { tasks: [task] }



Here we assume that task creation requires minimal checks and doesn't

wait for any lingering operations, and therefore, it is carried out much

faster. Furthermore, this operation (of  creating an asynchronous task)

might be isolated as a separate backend service for performing abstract

asynchronous tasks. By having the functionality of  creating tasks and

retrieving the list of  ongoing tasks we can signi�cantly narrow the “gray

zones” when clients can't learn the actual system state precisely.

Thus we naturally came to the pattern of  organizing asynchronous APIs

through task queues. Here we use the term “asynchronous” logically

meaning the absence of  mutual logical locks: the party that makes a request

gets a response immediately and does not wait until the requested

procedure is fully carried out being able to continue to interact with the

API. Technically in modern application environments, locking (of  both the

client and server) almost universally doesn't happen during long-

responding calls. However, logically allowing users to work with the API

while waiting for a response from a modifying endpoint is error-prone

and leads to collisions like the one we described above.

The asynchronous call pattern is useful for solving other practical tasks as

well:

Caching operation results and providing links to them (implying that

if  the client needs to reread the operation result or share it with

another client, it might use the task identi�er to do so)

Ensuring operation idempotency (through introducing the task

con�rmation step we will actually get the dra�-commit system as

discussed in the “Describing Final Interfaces” chapter)

Naturally improving resilience to peak loads on the service as the

new tasks will be queuing up (possibly prioritized)

Organizing interaction in the cases of  very long-lasting operations

that require more time than typical timeouts (which are tens of

seconds in the case of  network calls) or can take unpredictable time.



Also, asynchronous communication is more robust from a future API

development point of  view: request handling procedures might evolve

towards prolonging and extending the asynchronous execution pipelines

whereas synchronous handlers must retain reasonable execution times

which puts certain restrictions on possible internal architecture. One

might refer to the de�nitive work by Adam Bellemare on advantages of

event-driven architectures.

NB: In some APIs, an ambivalent decision is implemented where

endpoints feature a double interface that might either return a result or a

link to a task. Although from the API developer's point of  view, this might

look logical (if  the request was processed “quickly”, e.g. , served from cache,

the result is to be returned immediately; otherwise, the asynchronous task

is created), for API consumers, this solution is quite inconvenient as it

forces them to maintain two execution branches in their code. Sometimes,

a concept of  providing a double set of  endpoints (synchronous and

asynchronous ones) is implemented, but this simply shi�s the burden of

making decisions onto partners.

The popularity of  the asynchronicity pattern is also driven by the fact that

modern microservice architectures “under the hood” operate in

asynchronous mode through event queues or pub/sub middleware.

Implementing an analogous approach in external APIs is the simplest

solution to the problems caused by asynchronous internal architectures

(the unpredictable and sometimes very long latencies of  propagating

changes). Ultimately, some API vendors make all API methods

asynchronous (including the read-only ones) even if  there are no real

reasons to do so.

However, we must stress that excessive asynchronicity, though appealing

to API developers, implies several quite objectionable disadvantages:

1



�. If  a single queue service is shared by all endpoints, it becomes a single

point of  failure for the system. If  unpublished events are piling up

and/or the event processing pipeline is overloaded, all the API

endpoints start to su�er. Otherwise, if  there is a separate queue

service instance for every functional domain, the internal

architecture becomes much more complex, making monitoring and

troubleshooting increasingly costly.

�. For partners, writing code becomes more complicated. It is not only

about the physical volume of  code (creating a shared component to

communicate with queues is not that complex of  an engineering task)

but also about anticipating every endpoint to possibly respond slowly.

With synchronous endpoints, we assume by default that they respond

within a reasonable time, less than a typical response timeout (which,

for client applications, means that just a spinner might be shown to a

user). With asynchronous endpoints, we don't have such a guarantee

as it's simply impossible to provide one.

�. Employing task queues might lead to some problems speci�c to the

queue technology itself, i.e. , not related to the business logic of  the

request handler:

Tasks might be “lost” and never processed

Events might be received in the wrong order or processed twice,

which might a�ect public interfaces

Under the task identi�er, wrong data might be published

(corresponding to some other task) or the data might be

corrupted.

These issues will be totally unexpected by developers and will lead to

bugs in applications that are very hard to reproduce.



�. As a result of  the above, the question of  the viability of  such an SLA

level arises. With asynchronous tasks, it's rather easy to formally

make the API uptime 100.00% — just some requests will be served in

a couple of  weeks when the maintenance team �nds the root cause of

the delay. Of  course, that's not what API consumers want: their users

need their problems solved now or at least in a reasonable time, not in

two weeks.

Therefore, despite all the advantages of  the approach, we tend to

recommend applying this pattern only to those cases when they are really

needed (as in the example we started with when we needed to lower the

probability of  collisions) and having separate queues for each case. The

perfect task queue solution is the one that doesn't look like a task queue.

For example, we might simply make the “order creation task is accepted

and awaits execution” state a separate order status and make its identi�er

the future identi�er of  the order itself:

let pendingOrders = await api.
getOngoingOrders();

if (pendingOrders.length == 0) {
// Don't call it a “task”,
// just create an order
let order = await api

    .createOrder(…);
}

// App restart happens here,
// and all the same requests
// are repeated
let pendingOrders = await api.
getOngoingOrders(); 
/* → { orders: [{

    order_id: <task identifier>,
    status: "new"
  }]} */

NB: Let us also mention that in the asynchronous format, it's possible to

provide not only binary status (task done or not) but also execution

progress as a percentage if  needed.



References

Bellemare, A. (2020), Building Event-Driven Microservices1



Chapter 20. Lists and Accessing Them

In the previous chapter, we concluded with the following interface that

allows minimizing collisions while creating orders:

let pendingOrders = await api
  .getOngoingOrders(); 
→
{ orders: [{

order_id: <task identifier>,
    status: "new"
}, …]}

However, an attentive reader might notice that this interface violates the

recommendation we previously gave in the “Describing Final Interfaces”

chapter: the returned data volume must be limited, but there are no

restrictions in our design. This problem was already present in the

previous versions of  the endpoint, but abolishing asynchronous order

creation makes it much worse. The task creation operation must work as

quickly as possible, and therefore, almost all limit checks are to be

executed asynchronously. As a result, a client might easily create a large

number of  ongoing tasks which would potentially in�ate the size of  the

getOngoingOrders response.

NB: Having no limit at all on order task creation is unwise, and there must

be some (involving as lightweight checks as possible). Let us, however,

focus on the response size issue in this chapter.

Fixing this problem is rather simple: we might introduce a limit for the

items returned in the response, and allow passing �ltering and sorting

parameters, like this:



api.getOngoingOrders({
// The `limit` parameter 
// is optional, but there is
// a reasonable default value
limit: 100,
parameters: {
order_by: [{
field: "created_iso_time",
direction: "desc"

    }]
  }
})

However, introducing limits leads to another issue: if  the number of  items

to return is higher than the limit, how would clients access them?

The standard approach is to add an offset parameter or a page number:

api.getOngoingOrders({
// The `limit` parameter 
// is optional, but there is
// a reasonable default value
limit: 100,
// The default value is 0
offset: 100,

  parameters
})

With this approach, however, other problems arise. Let us imagine three

orders are being processed on behalf  of  the user:

[{
"id": 3,
"created_iso_time": "2022-12-22T15:35",
"status": "new"

}, {
"id": 2,
"created_iso_time": "2022-12-22T15:34",
"status": "new"

}, {
"id": 1,
"created_iso_time": "2022-12-22T15:33",
"status": "new"

}]



A partner application requested the �rst page of  the list:

api.getOrders({
limit: 2,
parameters: {
order_by: [{
field: "created_iso_time",
direction: "desc"

    }]
  }
})
→
{
"orders": [{
"id": 3, …

  }, {
"id": 2, …

  }]
}

Then the application requests the second page ("limit": 2, "offset":

2) and expects to retrieve the order with "id": 1. However, during the

interval between the requests, another order, with "id": 4, happened.

[{
"id": 4,
"created_iso_time": "2022-12-22T15:36",
"status": "new"

}, {
"id": 3,
"created_iso_time": "2022-12-22T15:35",
"status": "new"

}, {
"id": 2,
"created_iso_time": "2022-12-22T15:34",
"status": "ready"

}, {
"id": 1,
"created_iso_time": "2022-12-22T15:33",
"status": "new"

}]

Then upon requesting the second page of  the order list, instead of  getting

exactly one order with "id": 1, the application will get the "id": 2 order

once again:



api.getOrders({
limit: 2,
offset: 2

  parameters
})
→
{
"orders": [{
"id": 2, …

  }, {
"id": 1, …

  }]
}

These permutations are rather inconvenient in user interfaces (if  let's say,

the partner's accountant is requesting orders to calculate fees, they might

easily overlook the duplicate identi�ers and process one order twice). But

in the case of  programmable integrations, the situation becomes even more

complicated: the application developer needs to write rather unobvious

code (which preserves the information regarding which pages were

already processed) to carry out this enumeration correctly.

The problem might easily become even more sophisticated. For example,

if  we add sorting by two �elds, creation date and order status:



api.getOrders({
limit: 2,
parameters: {
order_by: [{
field: "status",
direction: "desc"

    }, {
field: "created_iso_time",
direction: "desc"

    }]
  }
})
→
{
"orders": [{
"id": 3,
"status": "new"

  }, {
"id": 2,
"status": "new"

  }]
}

Imagine, that in between requesting the �rst and the second pages, the

"id": 1 order changed its status and moved to the top of  the list. Upon

requesting the second page, the partner application will only receive the

"id": 2 order (for the second time) and miss the "id": 1 completely —

and there is no method to learn this fact!

Let us reiterate: this approach works poorly with visual interfaces, but

with program ones, it inevitably leads to mistakes. An API must provide

methods of  traversing large lists that guarantee clients can retrieve

the full and consistent dataset.

If  we don't go into implementation details, we can identify three main

patterns of  realizing such traversing, depending on how the data itself  is

organized.



Immutable Lists

The easiest case is with immutable lists, i.e. , when the set of  items never

changes. The limit/offset scheme then works perfectly and no additional

tricks are needed. Unfortunately, this rarely happens in real subject areas.

Additive Lists, Immutable Data

The case of  a list with immutable items and the operation of  adding new

ones is more typical. Most notably, we talk about event queues containing,

for example, new messages or noti�cations. Let's imagine there is an

endpoint in our co�ee API that allows partners to retrieve the history of

o�ers:

GET /v1/partners/{id}/offers/history↵
  ?limit=<limit>
→
{
"offer_history": [{
// A list item identifier
"id",
// An identifier of the user
// that got the offer
"user_id",
// Date and time of the search
"occurred_at",
// The search parameter values
// set by the user
"search_parameters",
// The offers that the user got
"offers"

  }]
}

The data returned from this endpoint is naturally immutable because it

re�ects a completed action: a user searched for o�ers and received a

response. However, new items are continuously added to the list,

potentially in large chunks, as users might make multiple searches in

succession.



Partners can utilize this data to implement various features, such as:

�. Real-time user behavior analysis (e.g. , sending push noti�cations

with discount codes to encourage users to convert o�ers to orders)

�. Statistical analysis (e.g. , calculating conversion rates per hour).

To enable these scenarios, we need to expose through the API two

operations with the o�er history:

�. For the �rst task, the real-time fetching of  new o�ers that were made

since the last request.

�. For the second task, traversing the list, i.e. , retrieving all queries until

some condition is reached (possibly, the end of  the list).

Both scenarios are covered with the limit/offset approach but require

signi�cant e�ort to write code properly as partners need to somehow align

their requests with the rate of  incoming queries. Additionally, note that

using the limit/offset scheme makes caching impossible as repeating

requests with the same limit/offset values will emit di�erent results.

To solve this issue, we need to rely not on an attribute that constantly

changes (such as the item position in the list) but on other anchors. The

important rule is that this attribute must provide the possibility to

unambiguously tell which list elements are “newer” compared to the given

one (i.e. , precede it in the list) and which are “older”.

If  the data storage we use for keeping list items o�ers the possibility of

using monotonically increased identi�ers (which practically means two

things: (1) the DB supports auto-incremental columns and (2) there are

insert locks that guarantee inserts are performed sequentially), then using

the monotonous identi�er is the most convenient way of  organizing list

traversal:



// Retrieve the records that precede
// the one with the given id
GET /v1/partners/{id}/offers/history↵
  ?newer_than=<item_id>&limit=<limit>
// Retrieve the records that follow
// the one with the given id
GET /v1/partners/{id}/offers/history↵
  ?older_than=<item_id>&limit=<limit>

The �rst request format allows for implementing the �rst scenario, i.e. ,

retrieving the fresh portion of  the data. Conversely, the second format

makes it possible to consistently iterate over the data to ful�ll the second

scenario. Importantly, the second request is cacheable as the tail of  the list

never changes.

NB: In the “Describing Final Interfaces” chapter we recommended

avoiding exposing incremental identi�ers in publicly accessible APIs. Note

that the scheme described above might be augmented to comply with this

rule by exposing some arbitrary secondary identi�ers. The requirement is

that these identi�ers might be unequivocally converted into monotonous

ones.

Another possible anchor to rely on is the record creation date. However,

this approach is harder to implement for the following reasons:

Creation dates for two records might be identical, especially if  the

records are mass-generated programmatically. In the worst-case

scenario, it might happen that at some speci�c moment, more

records were created than one request page contains making it

impossible to traverse them.

If  the storage supports parallel writing to several nodes (i.e. ,

implements the “multi-leader replication” approach), the most

recently created record might have a slightly earlier creation date

than the second-recent one because clocks on di�erent nodes might

tick slightly di�erently, and it is challenging to achieve even



microsecond-precision coherence.  This breaks the monotonicity

invariant, which makes it poorly �t for use in public APIs, as we

discussed it in the “Eventual Consistency” chapter. If  there is no other

choice but relying on such storage, one of  two evils is to be chosen:

Introducing arti�cial delays, i.e. , returning only items created

earlier than N seconds ago, selecting this N to be certainly more

than the clock irregularity and the replication lag. This technique

also works in the case of  asynchronously populated lists. Keep in

mind, however, that this solution is probabilistic, and wrong

data will be served to clients in case of  backend synchronization

problems.

Describe the instability of  ordering list items in the docs (and

thus make partners responsible for solving arising issues).

O�en, the interfaces of  traversing data through stating boundaries are

generalized by introducing the concept of  a “cursor”:

// Initiate list traversal
POST /v1/partners/{id}/offers/history↵
  /search
{
"order_by": [{
"field": "created",
"direction": "desc"

  }]
}
→
{
"cursor": "TmluZSBQcmluY2VzIGluIEFtYmVy"

}

// Get the next data chunk
GET /v1/partners/{id}/offers/history↵
  ?cursor=TmluZSBQcmluY2VzIGluIEFtYmVy↵
  &limit=100
→
{
"items": […],
// Pointer to the next data chunk
"cursor": "R3VucyBvZiBBdmFsb24"

}

1



A cursor might be just an encoded identi�er of  the last record or it might

comprise all the searching parameters. One advantage of  using cursors

instead of  exposing raw monotonous �elds is the possibility to change the

underlying technology. For example, you might switch from using an auto-

incremental key to using the date of  the last known record's creation

without breaking backward compatibility. (That's why cursors are usually

opaque strings: providing readable cursors would mean that you now have

to maintain the cursor format even if  you never documented it. It's better

to return cursors encrypted or at least coded in a form that will not arise

the desire to decode it and experiment with parameters.)

The cursor-based approach also allows adding new �lters and sorting

directions in a backward-compatible manner — provided you organize

the data in a way that cursor-based traversal will continue working.

// Initialize list traversal
POST /v1/partners/{id}/offers/history↵
  /search
{
// Add a filter by the recipe
"filter": {
"recipe": "americano"

  },
// Add a new sorting mode
// by the distance from some
// location
"order_by": [{
"mode": "distance",
"location": [-86.2, 39.8]

  }]
}
→
{
"items": […],
"cursor": 
"Q29mZmVlIGFuZCBDb250ZW1wbGF0aW9u"

}



A small footnote: sometimes, the absence of  the next-page cursor in the

response is used as a �ag to signal that iterating is over and there are no

more elements in the list. However, we would rather recommend not using

this practice and always returning a cursor even if  it points to an empty

page. This approach allows for adding the functionality of  dynamically

inserting new items at the end of  the list.

NB: In some articles, organizing list traversals through monotonous

identi�ers  / creation dates  / cursors is not recommended because it is

impossible to show a page selection to the end user and allow them to

choose the desired result page. However, we should consider the following:

This case, of  showing a pager and selecting a page, makes sense for

end-user interfaces only. It's unlikely that an API would require

access to random data pages.

If  we talk about the internal API for an application that provides the

UI control element with a pager, the proper approach is to prepare

the data for this control element on the server side, including

generating links to pages.

The boundary-based approach doesn't mean that using limit/offset

parameters is prohibited. It is quite possible to have a double

interface that would respond to both GET /items?cursor=… and GET

/items?offset=…&limit=… queries.

Finally, if  the need to have access to an arbitrary data page in the UI

exists, we need to ask ourselves a question: what is the user's problem

that we're solving with this UI? Most likely, users are searching for

something, such as a speci�c list item or where they were the last

time they worked with the list. Speci�c UI control elements to help

them will be likely more convenient than a pager.



The General Case

Unfortunately, it is not universally possible to organize the data in a way

that would not require mutable lists. For example, we cannot paginate the

list of  ongoing orders consistently because orders change their status and

randomly enter and leave this list. In these general scenarios, we need to

focus on the use cases for accessing the data.

Sometimes, the task can be reduced to an immutable list if  we create a

snapshot of  the data. In many cases, it is actually more convenient for

partners to work with a snapshot that is current for a speci�c date as it

eliminates the necessity of  taking ongoing changes into account. This

approach works well with accessing “cold” data storage by downloading

chunks of  data and putting them into “hot” storage upon request.

POST /v1/orders/archive/retrieve
{
"created_iso_date": {
"from": "1980-01-01",
"to": "1990-01-01"

  }
}
→
{
"task_id": <an identifier of

    a task to retrieve the data>
}

The disadvantage of  this approach is also clear: it requires additional

(sometimes quite considerable) computational resources to create and

store a snapshot (and therefore requires a separate tari�). And we actually

haven't solved the problem: though we don't expose the real-time traversal

functionality in public APIs, we still need to implement it internally to be

able to make a snapshot.

The inverse approach to the problem is to never provide more than one

page of  data, meaning that partners can only access the “newest” data

chunk. This technique is viable in one of  three cases:



If  the endpoint features a search algorithm that fetches the most

relevant data. As we are well aware, nobody needs a second search

result page.

If  the endpoint is needed to modify data. For example, the partner's

service retrieves all “new” orders to transit them into the “accepted”

status; then pagination is not needed at all as with each request the

partner is removing items from the top of  the list.

The important case for such modi�cations is marking the

received data as “read”.

Finally, if  the endpoint is needed to access only real-time “raw” data

while the processed and classi�ed data are available through other

interfaces.

If  none of  the approaches above works, our only solution is changing the

subject area itself. If  we can't consistently enumerate list elements, we

need to �nd a facet of  the same data that we can enumerate. In our

example with the ongoing orders we might make an ordered list of  the

events of  creating new orders:

// Retrieve all the events older
// than the one with the given id
GET /v1/orders/created-history↵
  ?older_than=<item_id>&limit=<limit>
→
{
"orders_created_events": [{
"id": <event id>,
"occured_at",
"order_id"

  }, …]
}

Events themselves and the order of  their occurrence are immutable.

Therefore, it's possible to organize traversing the list. It is important to

note that the order creation event is not the order itself: when a partner

reads an event, the order might have already changed its status. However,

accessing all new orders is ultimately doable, although not in the most

e�cient manner.



NB: In the code samples above, we omitted passing metadata for

responses, such as the number of  items in the list, the has_more_items

�ag, etc. Although this metadata is not mandatory (i.e. , clients will learn

the list size when they retrieve it fully), having it makes working with the

API more convenient for developers. Therefore we recommend adding it to

responses.

References

See “Ranganathan, K. A. Matter of  Time: Evolving Clock Sync for

Distributed Databases” · www.yugabyte.com/blog/evolving-clock-sync-

for-distributed-databases or refer to Kleppmann, M. (2017), Chapter 8. The

Trouble with Distributed Systems

1

https://www.yugabyte.com/blog/evolving-clock-sync-for-distributed-databases/
https://www.yugabyte.com/blog/evolving-clock-sync-for-distributed-databases/


Chapter 21. Bidirectional Data Flows. Push and Poll
Models

In the previous chapter, we discussed the following scenario: a partner

receives information about new events occurring in the system by

periodically requesting an endpoint that supports retrieving ordered lists.

GET /v1/orders/created-history↵
  ?older_than=<item_id>&limit=<limit>
→
{
"orders_created_events": [{
"id",
"occured_at",
"order_id"

  }, …]
}

This pattern (known as polling ) is the most common approach to

organizing two-way communication in an API when a partner needs not

only to send data to the server but also to receive noti�cations from the

server about changes in some state.

Although this approach is quite easy to implement, polling always

requires a compromise between responsiveness, performance, and system

throughput:

The longer the interval between consecutive requests, the greater the

delay between the change of  state on the server and receiving the

information about it on the client, and the potentially larger the

tra�c volume that needs to be transmitted in one iteration.

On the other hand, the shorter this interval, the more requests will be

made in vain, as no changes in the system have occurred during the

elapsed time.

1



In other words, polling always generates some background tra�c in the

system but never guarantees maximum responsiveness. Sometimes, this

problem is solved by using the so-called “long polling ,” which

intentionally delays the server's response for a prolonged period (seconds,

tens of  seconds) until some state change occurs. However, we do not

recommend using this approach in modern systems due to associated

technical problems, particularly in unreliable network conditions where

the client has no way of  knowing that the connection is lost, and a new

request needs to be sent.

If  regular polling is insu�cient to solve the user's problem, you can switch

to a reverse model (push) in which the server itself  informs the client that

changes have occurred in the system.

Although the problem and the ways to solve it may appear similar,

completely di�erent technologies are currently used to deliver messages

from the backend to the backend and from the backend to the client device.

Delivering Notifications to Client Devices

As various mobile platforms currently constitute a major share of  all client

devices, this implies signi�cant limitations in terms of  battery and partly

tra�c savings on the technologies for data exchange between the server

and the end user. Many platform and device manufacturers monitor the

resources consumed by the application and can send it to the background

or close open connections. In such a situation, frequent polling should

only be used in active phases of  the application work cycle (i.e. , when the

user is directly interacting with the UI) or in controlled environments (for

example, if  employees of  a partner company use the application in their

work and can add it to system exceptions).

Three alternatives to polling might be proposed:

2



1. Duplex Connections

The most obvious option is to use technologies that can transmit messages

in both directions over a single connection. The best-known example of

such technology is WebSockets . Sometimes, the Server Push functionality

of  the HTTP/2 protocol  is used for this purpose; however, we must note

that the speci�cation formally does not allow such usage. There is also the

Web�TC  protocol; its main purpose is a peer-to-peer exchange of  media

data, and it's rarely used in client-server interaction.

Although the idea looks simple and attractive, its applicability to real-

world use cases is limited. Popular server so�ware and frameworks do not

support server-initiated message sending (for instance, gRPC does

support streamed responses , but the client should initiate the exchange;

using gRPC server streams to send server-initiated events is essentially

employing HTTP/2 server pushes for this purpose, and it's the same

technique as in the long polling approach, just a bit more modern), and the

existing speci�cation de�nition standards do not support it — as

WebSocket is a low-level protocol, and you will need to design the

interaction format on your own.

Duplex connections still su�er from the unreliability of  the network and

require implementing additional tricks to tell the di�erence between a

network problem and the absence of  new messages. All these issues result

in limited applicability of  the technology; it's mostly used in web

applications.

2. Separate Callback Channels

Instead of  a duplex connection, two separate channels might be used: one

for sending requests to the server and one for receiving noti�cations from

the server. This implies that clients subscribe to message queues generated

by the server (a “message broker”) or, sometimes, other clients, typically

by implementing the publisher/subscriber (“pub/sub”) pattern.  This

3

4

5

6

7



implies that:

The client sends requests either through regular API calls or by

publishing events to a queue (or queues).

The client receives callback noti�cations by listening for events on a

queue. It might be the same queue the client used for sending events

or a completely di�erent queue (or queues).

Therefore, this approach is following neither request-response (even if  a

callback event is a direct response to the client’s actions, it is received

asynchronously, requiring the client to match the response to its requests)

nor a duplex connection pattern. However, we must note that this is a

logical distinction for the convenience of  client developers, as, under the

hood, the underlying messaging system framework typically relies on

WebSockets or implements polling.

The most popular technology of  this kind is MQTT . Although it is

considered highly e�cient due to its use of  low-level protocols, its

disadvantages stem from its advantages:

The technology is designed to implement the pub/sub pattern, and its

primary value lies in the fact that the server so�ware (MQTT Broker)

is provided alongside the protocol itself. Applying it to other tasks,

especially bidirectional communication, can be challenging.

The use of  low-level protocols requires developers to de�ne their own

data formats.

Another popular technology for organizing message queues is the

Advanced Message Queuing Protocol (AMQP). AMQP is an open standard

for implementing message queues,  with many independent client and

server (broker) implementations. One notable broker implementation is

RabbitMQ,  while AMQP clients are typically implemented as libraries

for speci�c client platforms and programming languages.

8

9

10



There is also a web standard for sending server noti�cations called Server-

Sent Events  (SSE). However, SSE is less functional than WebSockets

(supporting only text data and unidirectional �ow) and is rarely used.

A curious reader may refer to the corresponding chapter in Ian Gorton’s

in�uential book  or to Adam Bellemare’s compendium on the topic.

3. Third-Party Push Notifications

One of  the notorious problems with the long polling  / WebSocket  / SSE  /

MQTT technologies is the necessity to maintain an open network

connection between the client and the server, which might be a problem

for mobile applications and IoT devices from in terms of  performance and

battery life. One option that allows for mitigating the issue is delegating

sending push noti�cations to a third-party service (the most popular

choice today is Google's Firebase Cloud Messaging) that delivers

noti�cations through the built-in mechanisms of  the platform. Using such

integrated services takes most of  the load of  maintaining open

connections and checking their status o�  the developer's shoulders. The

disadvantages of  using third-party services are the necessity to pay for

them and strict limits on message sizes.

Also, sending push noti�cations to end-user devices su�ers from one

important issue: the percentage of  successfully delivered messages never

reaches 100%; the message drop rate might be tens of  percent. Taking into

account the message size limitations, it's actually better to implement a

mixed model than a pure push model: the client continues polling the

server, just less frequently, and push noti�cations just trigger ahead-of-

time polling. (This problem is actually applicable to any noti�cation

delivery technology. Low-level protocols o�er more options to set delivery

guarantees; however, given the situation with forceful closing of  open

connections by OSes, having low-frequency polling as a precaution in an

application is almost never a bad thing.)

11

12 13



Using Push Technologies in Public APIs

As a consequence of  the fragmentation of  client technologies described

above, it's virtually impossible to use any of  them but polling in public

APIs. Requiring partners to implement receiving noti�cations through

WebSocket, MQTT, or SSE channels raises the bar for adopting the API as

working with low-level protocols, which are poorly covered by existing

IDLs and code-generation tools, requires a signi�cant amount of  e�ort

and is prone to implementation errors. If  you decide to provide ready-to-

use SDKs to ease working with the API, you will need to develop them for

every applicable platform (which is, let us reiterate, quite labor-

consuming). Given that HTTP polling is much easier to implement and its

disadvantages play their role only in situations when one really needs to

think about saving tra�c and computational resources, we would rather

recommend exposing additional channels for receiving server-sent

noti�cations as an addition to polling, not instead of  it.

Using platform pushes might be a �ne solution for public APIs, but there

another problem arises: application developers are not eager to allow

other third-party services send push noti�cations, and that's for a list of

reasons, starting with the costs of  sending pushes and ending with

security considerations.

In fact, the most convenient way of  organizing message delivery from the

public API backend to a partner service's user is by delivering messages

backend-to-backend. This way, the partner service can relay it further

using push noti�cations or any other technology that the partner selected

for developing their applications.



Delivering Backend-to-Backend Notifications

Unlike client applications, server-side integrations universally utilize a

single approach to implementing a bidirectional data �ow, apart from

polling (which is as applicable to server-to-server integrations as to client-

server ones, and bears the same pros and cons). The approach is using a

separate communication channel for callbacks. In the case of  public APIs,

the dominating practice is using callback URLs, also known as “webhooks.”

Although long polling, WebSocket, HTTP/2 Push, and other technologies

discussed above are also applicable to realizing backend-to-backend

communication, we �nd it di�cult to name a popular API that utilizes any

of  them. We assume that the reasons for this are:

Server-to-server integrations are less susceptible to performance

issues (servers rarely hit any limits on network bandwidth, and

keeping an open connection is not a problem as well)

There are higher expectations regarding message delivery guarantees

A broad choice of  ready-to-use components to develop a webhook

service (as it's basically a regular webserver) is available

It is possible to have a speci�cation covering the communication

format and use the advantages of  code-generation.

To integrate via a webhook, a partner speci�es a URL of  their own message

processing server, and the API provider calls this endpoint to notify about

status changes.

Let us imagine that in our co�ee example the partner has a backend

capable of  processing newly created orders to be processed by partner's

co�ee shops, and we need to organize such communication. Realizing this

task comprise several steps:



1. Negotiate a Contract

Depending on how important the partner is for our business, di�erent

options are possible:

The API vendor might develop the functionality of  calling the

partner's webhook utilizing a protocol proposed by the partner

Contrary to the previous, it's partner's job to develop an endpoint to

support a format proposed by the API developers

Any combination of  the above

What is important is that the must be a formal contract (preferably in a

form of  a speci�cation) for webhook's request and response formats and all

the errors that might happen.

2. Agree on Authorization and Authentication Methods

As a webhook is a callback channel, you will need to develop a separate

authorization system to deal with it as it's partners duty to check that the

request is genuinely coming from the API backend, not vice versa. We

reiterate here our strictest recommendation to stick to existing standard

techniques, such as mTLS; though in the real world, you will likely have to

use archaic methods like �xing the caller server's IP address.

3. Develop an Interface for Setting the URL of a

As the callback endpoint is developed by partners, we do not know its URL

beforehand. It implies some interface must exist for setting this URL and

authorized public keys (probably in a form of  a control panel for partners).

Importantly, the operation of  setting a webhook URL is to be treated as a

potentially hazardous one. It is highly desirable to request a second

authentication factor to authorize the operations as a potential attacker

wreak a lot of  havoc if  there is a vulnerability in the procedure:



By setting an arbitrary URL, the perpetrator might get access to all

partner's orders (and the partner might lose access)

This vulnerability might be used for organizing DoS attacks on third

parties

If  an internal URL might be set as a webhook, a SSRF attack  might be

directed toward the API vendor's own infrastructure.

Typical Problems of Webhook-Powered Integrations

Bidirectional data �ows (both client-server and server-server ones,

though the latter to a greater extent) bear quite undesirable risks for an

API provider. In general, the quality of  integration primarily depends on

the API developers. In the callback-based integration, it's vice versa: the

integration quality depends on how partners implemented the webhook.

We might face numerous problems with the partners' code:

Webhook might return false-positive responses meaning the

noti�cation was not actually processed but the success status was

returned by the partner's server

On other hand, false-negative responses are also possible if  the

operation was actually accepted but erroneously returned an error (or

just responded in invalid format)

Webhook might be processing incoming requests very slowly — up to a

point when the requesting server will be just unable to deliver

subsequent messages on time

Partner's developers might make a mistake in implementing the

idempotency policies, and repeated requests to the webhook will lead

to errors or data inconsistency on the partner's side

The size of  the message body might exceed the limit set in the

partner's webserver con�guration

On the partner's side, authentication token checking might be

missing or �awed so some malefactor might be able to issue requests

pretending they come from the genuine API server

14



Finally, the endpoint might simply be unavailable because of  many

reasons, starting from technical issues in the data center where

partner's servers are located and ending with a human error in

setting webhook's URL.

Obviously, we can't guarantee partners don't make any of  these mistakes.

The only thing we can do is to minimize the impact radius:

�. The system state must be restorable. If  the partner erroneously

responded that messages are processed while they are not, there must

be a possibility for them to redeem themselves and get the list of

missed events and/or the full system state and �x all the issues

�. Help partners to write proper code by describing in the

documentation all unobvious subtleties that inexperienced

developers might be unaware of:

Idempotency keys for every operation

Delivery guarantees (“at least once,” “exactly ones,” etc.; see the

reference description  on the example of  Apache Ka�ka API)

Possibility of  the server generating parallel requests and the

maximum number of  such requests at a time

Guarantees of  message ordering (i.e. , the noti�cations are

always delivered ordered from the oldest one to the newest one)

or the absence of  such guarantees

The sizes of  all messages and message �elds in bytes

The retry policy in case an error is returned by the partner's

server

�. Implement a monitoring system to check the health of  partners'

endpoints:

If  a large number of  errors or timeouts occurs, it must be

escalated (including notifying the partner about the problem),

probably with several escalation tiers,

15



If  too many un-processed noti�cations are stuck, there must be

a mechanism of  controllable degradation (limiting the number

of  requests toward the partner, e.g. cutting the demand by

disallowing some users to make an order) up to fully

disconnecting the partner from the platform.

Message Queues

As for internal APIs, the webhook technology (i.e. , the possibility to

programmatically de�ne a callback URL) is typically not needed at all as

backend services comprising are symmetrically able to call each other.

However, the problems of  callback-based integration discussed above are

equally actual for internal calls. Requesting an internal API might result in

a false-negative mistake, internal clients might be unaware that ordering

is not guaranteed, etc.

To solve these problems, as with client-server interaction, message queues

might be used instead of  making direct calls. At present moment,

pub/sub-based architectures are very popular in enterprise so�ware

development, up to switching any inter-service communication to

message queues.

NB: Let us note that everything comes with a price, and these delivery

guarantees and horizontal scalability are not an exclusion:

All communication becomes eventually consistent with all the

implications

Decent horizontal scalability and cheap message queue usage are

only achievable with at least once/at most once policies and no

ordering guarantee

Queues might accumulate unprocessed events, introducing

increasing delays, and solving this issue on the subscriber's side

might be quite non-trivial.



Also, in public APIs both technologies are frequently used in conjunction:

the API backend sends a task to call the webhook in the form of  publishing

an event which the specially designed internal service will try to process

by making the call.

Theoretically, we can imagine an integration that exposes directly

accessible message queues in one of  the standard formats for partners to

subscribe. However, we are unaware of  any examples of  such APIs.



References

Polling (Computer Science)

en.wikipedia.org/wiki/Polling_(computer_science)

Push Technology. Long Polling

en.wikipedia.org/wiki/Push_technology#Long_polling

WebSockets

websockets.spec.whatwg.org

Hypertext Transfer Protocol Version 2 (HTTP/2). Server Push

datatracker.ietf.org/doc/html/rfc7540#section-8.2

Web�TC: Real-Time Communication in Browsers

www.w3.org/TR/webrtc

gRPC. Server streaming RPC

grpc.io/docs/what-is-grpc/core-concepts/#server-streaming-rpc

Publish / Subscribe Pattern

en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

MQTT

docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

AMQP

www.amqp.org

RabbitMQ

www.rabbitmq.com

HTML Living Standard. Server-Sent Events

html.spec.whatwg.org/multipage/server-sent-events.html

Gorton, I. (2022), Chapter 7. Asynchronous Messaging

Bellemare, A. (2020), Building Event-Driven Microservices

See “Server Side Request Forgery” · owasp.org/www-

community/attacks/Server_Side_Request_Forgery or refer to

Madden, N. (2020), 10.2.7 Preventing SSRF attacks

1

2

3

4

5

6

7

8

9

10

11

12

13

14

https://en.wikipedia.org/wiki/Polling_(computer_science)
https://en.wikipedia.org/wiki/Push_technology#Long_polling
https://websockets.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/rfc7540#section-8.2
https://www.w3.org/TR/webrtc/
https://grpc.io/docs/what-is-grpc/core-concepts/#server-streaming-rpc
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.amqp.org/
https://www.rabbitmq.com/
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery


Apache Ka�ka. Ka�ka Design. Message Delivery Guarantees

docs.con�uent.io/ka�ka/design/delivery-semantics.html

15

https://docs.confluent.io/kafka/design/delivery-semantics.html


Chapter 22. Multiplexing Notifications. Asynchronous
Event Processing

One of  the vexing restrictions of  almost every technology mentioned in

the previous chapter is the limited size of  messages. With client push

noti�cations the situation is the most problematic: Google Firebase

Messaging at the moment this chapter is being written allowed no more

than 4000 bytes of  payload. In backend development, the restrictions are

also notable; let's say, Amazon SQS limits the size of  messages to 256 KiB.

While developing webhook-based integrations, you risk hitting the

maximum body size allowed by the partner's webserver (for example, in

nginx the default value is 1MB). This leads us to the necessity of  making

two technical decisions regarding the noti�cation formats:

Whether a message contains all data needed to process it or just

noti�es some state change has happened

If  we choose the latter, whether a single noti�cation contains data on

a single change, or it might bear several such events.

On the example of  our co�ee API:

// Option #1: the message
// contains all the order data
POST /partner/webhook
Host: partners.host
{
"event_id",
"occurred_at",
"order": {
"id",
"status",
"recipe_id",
"volume",
// Other data fields

    …
  }
}



// Option #2: the message body
// contains only the notification
// of the status change
POST /partner/webhook
Host: partners.host
{
"event_id",
// Message type: a notification
// about a new order
"event_type": "new_order",
"occurred_at",
// Data sufficient to 
// retrieve the full state,
// in our case, the order identifier
"order_id"

}
// To process the event, the partner
// must request some endpoint
// on the API vendor's side,
// possibly asynchronously
GET /v1/orders/{id}
→
{ /* full data regarding
     the order */ }

// Option #3: the API vendor
// notifies partners that
// several orders await their
// reaction
POST /partner/webhook
Host: partners.host
{
// The system state revision
// and/or a cursor to retrieve
// the orders might be provided
"occurred_at",
"pending_order_count":
<the number of pending orders>

}
// In response to such a call,
// partners should retrieve the list
// of ongoing orders
GET /v1/orders/pending
→
{
"orders",
"cursor"

}



Which option to select depends on the subject area (and on the allowed

message sizes in particular) and on the procedure of  handling messages by

partners. In our case, every order must be processed independently and

the number of  messages during the order life cycle is low, so our natural

choice would be either option #1 (if  order data cannot contain

unpredictably large �elds) or #2. Option #3 is viable if:

The API generates a lot of  noti�cations for a single logical entity

Partners are interested in fresh state changes only

Or events must be processed sequentially, and no parallelism is

allowed.

NB: The approach #3 (and partly #2) naturally leads us to the scheme that

is typical for client-server integration: the push message itself  contains

almost no data and is only a trigger for ahead-of-time polling.

The technique of  sending only essential data in the noti�cation has one

important disadvantage, apart from more complicated data �ows and

increased request rate. With option #1 implemented (i.e. , the message

contains all the data), we might assume that returning a success response

by the subscriber is equivalent to successfully processing the state change

by the partner (although it's not guaranteed if  the partner uses

asynchronous techniques). With options #2 and #3, this is certainly not

the case: the partner must carry out additional actions (starting from

retrieving the actual order state) to fully process the message. This implies

that two separate statuses might be needed: “message received” and

“message processed.” Ideally, the latter should follow the logic of  the API

work cycle, i.e. , the partner should carry out some follow-up action upon

processing the event, and this action might be treated as the “message

processed” signal. In our co�ee example, we can expect that the partner

will either accept or reject an order a�er receiving the “new order”

message. Then the full message processing �ow will look like this:



// The API vendor
// notifies the partner that
// several orders await their
// reaction
POST /partner/webhook
Host: partners.host
{
"occurred_at",
"pending_order_count":
<the number of pending orders>

}

// In response, the partner
// retrieves the list of
// pending orders
GET /v1/orders/pending
→
{
"orders",
"cursor"

}

// After the orders are processed,
// the partners notify about this
// by calling the specific API
// endpoint
POST /v1/orders/bulk-status-change
{
"status_changes": [{
"order_id",
"new_status": "accepted",
// Other relevant information
// e.g. the preparation time
// estimates

    …
  }, {

"order_id",
"new_status": "rejected",
"reason"

  }, …]
}



If  there is no genuine follow-up call expected during our API work cycle,

we can introduce an endpoint to explicitly mark noti�cations as

processed. This step is not mandatory as we can always stipulate that it is

the partner's responsibility to process noti�cations and we do not expect

any con�rmations. However, we will lose an important monitoring tool if

we do so, as we can no longer track what's happening on the partner's side,

i.e. , whether the partner is able to process noti�cations on time. This, in

turn, will make it harder to develop the degradation and emergency

shutdown mechanisms we talked about in the previous chapter.



Chapter 23. Atomicity of Bulk Changes

Let's transition from webhooks back to developing direct-call APIs. The

design of  the orders/bulk-status-change endpoint, as described in the

previous chapter, raises an interesting question: what should we do if

some changes were successfully processed by our backend while others

were not?

Let's consider a scenario where the partner noti�es us about status

changes that have occurred for two orders:

POST /v1/orders/bulk-status-change
{
"status_changes": [{
"order_id": "1",
"new_status": "accepted",
// Other relevant data,
// such as estimated
// preparation time

    …
  }, {

"order_id": "2",
"new_status": "rejected",
"reason"

  }]
}
→
500 Internal Server Error

In this case, if  changing the status of  one order results in an error, how

should we organize this “umbrella” endpoint (which acts as a proxy to

process a list of  nested sub-requests)? We can propose at least four

di�erent options:

A. Guarantee atomicity and idempotency. If  any of  the sub-requests

fail, none of  the changes are applied.



B. Guarantee idempotency but not atomicity. If  some sub-requests

fail, repeating the call with the same idempotency key results in no

action and leaves the system exactly in the same state (i.e. ,

unsuccessful calls will never be executed, even if  the obstacles are

resolved, until a new call with a new idempotency key is made).

C. Guarantee neither idempotency nor atomicity and process the sub-

requests independently.

D. Do not guarantee atomicity and completely prohibit retries by

requiring the inclusion of  the actual resource revision in the request

(see the “Synchronization Strategies” chapter).

From a general standpoint, it appears that the �rst option is most suitable

for public APIs: if  you can guarantee atomicity (despite it potentially poses

scalability challenges), it is advisable to do so. In the �rst revision of  this

book, we unconditionally recommended adhering to this solution.

However, if  we consider the situation from the partner's perspective, we

realize that the decision is not as straightforward as one might initially

think. Let's imagine that the partner has implemented the following

functionality:

�. The partner's backend processes noti�cations about incoming orders

through a webhook.

�. The backend makes inquiries to co�ee shops regarding whether they

can ful�ll the orders.

�. Periodically, let's say once every 10 seconds, the partner collects all

the status changes (i.e. , responses from the co�ee shops) and calls the

bulk-status-change endpoint with the list of  changes.

Now, let's consider a scenario where the partner receives an error from the

API endpoint during the third step. What would developers do in such a

situation? Most probably, one of  the following solutions might be

implemented in the partner's code:

�. Unconditional retry of  the request:



// Retrieve the ongoing orders
let pendingOrders = await api
  .getPendingOrders();
// The partner checks the status of every 
// order in its system and prepares 
// the list of changes to perform
let changes = 
await prepareStatusChanges(

    pendingOrders
  );

let result;
let tryNo = 0;
let timeout = DEFAULT_RETRY_TIMEOUT;
while (result && tryNo++ < MAX_RETRIES) {
try {
// Send the list of changes

    result = await api.bulkStatusChange(
      changes,

// Provide the newest known revision
      pendingOrders.revision
    );
  } catch (e) {

// If there is an error, repeat 
// the request with some delay

    logger.error(e);
await wait(timeout);

    timeout = min(timeout*2, MAX_TIMEOUT);
  }
}

NB: In the code sample above, we provide the “right” retry policy with

exponentially increasing delays and a total limit on the number of

retries, as we recommended earlier in the “Describing Final

Interfaces” chapter. However, be warned that real partners' code may

frequently lack such precautions. For the sake of  readability, we will

skip this bulky construct in the following code samples.

�. Retrying only failed sub-requests:



let pendingOrders = await api
  .getPendingOrders();
let changes = 
await prepareStatusChanges(

    pendingOrders
  );

let result;
while (changes.length) {
let failedChanges = [];
try {

    result = await api.bulkStatusChange(
      changes, pendingOrders.revision
    );
  } catch (e) {

// Assuming that the `e.changes`
// field contains the errors breakdown
let i = 0;
for (; i < e.changes.length; i++) {
if (e.changes[i].status == 'failed') {

        failedChanges.push(changes[i]);
      }
    }
  }
// Prepare a new request
// comprising only the failed
// sub-requests

  changes = failedChanges;
}

�. Restarting the entire pipeline. In this case, the partner retrieves the

list of  pending orders anew and forms a new bulk change request:

do {
let pendingOrders = await api

    .getPendingOrders();
let changes = 
await prepareStatusChanges(

      pendingOrders
    );
// Request changes,
// if there are any
if (changes.length) {
await api.bulkStatusChange(

      changes,
      pendingOrders.revision
    );
  }
} while (pendingOrders.length);



If  we examine the possible combinations of  client and server

implementation options, we will discover that approaches (B) and (D) are

incompatible with solution (1). Retrying the same request a�er a partial

failure will never succeed, and the server will repeatedly attempt the

failing request until it exhausts the remaining retry attempts.

Now, let's introduce another crucial condition to the problem statement:

imagine that certain issues with a sub-request can not be resolved by

retrying it. For example, if  the partner attempts to con�rm an order that

has already been canceled by the customer. If  a bulk status change request

contains such a sub-request, the atomic server that implements paradigm

(A) will immediately “penalize” the partner. Regardless of  how many times

and in what order the set of  sub-requests is repeated, valid sub-requests will

never be executed if there is even a single invalid one. On the other hand, a non-

atomic server will at least continue processing the valid parts of  bulk

requests.

This leads us to a seemingly paradoxical conclusion: in order to ensure the

partners' code continues to function somehow and to allow them time to

address their invalid sub-requests we should adopt the least strict non-

idempotent non-atomic approach to the design of  the bulk state change

endpoint. However, we consider this conclusion to be incorrect: the “zoo”

of  possible client and server implementations and the associated problems

demonstrate that bulk state change endpoints are inherently undesirable. Such

endpoints require maintaining an additional layer of  logic in both server

and client code, and the logic itself  is quite non-obvious. The non-atomic

non-idempotent bulk state changes will very soon result in nasty issues:



// A partner issues a refund
// and cancels the order
POST /v1/bulk-status-change
{
"changes": [{
"operation": "refund",
"order_id"

  }, {
"operation": "cancel",
"order_id"

  }]
}
→
// During bulk change execution,
// the user was able to walk in
// and fetch the order
{
"changes": [{
// The refund is successful…
"status": "success"

  }, {
// …while canceling the order
// is not
"status": "fail",
"reason": "already_served"

  }]
}

If  sub-operations in the list depend on each other (as in the example

above: the partner needs both refunding and canceling the order to succeed

as there is no sense to ful�ll only one of  them) or the execution order is

important, non-atomic endpoints will constantly lead to new problems.

And if  you think that in your subject area, there are no such problems, it

might turn out at any moment that you have overlooked something.

So, our recommendations for bulk modifying endpoints are:

�. If  you can avoid creating such endpoints — do it. In server-to-server

integrations, the pro�t is marginal. In modern networks that support

QUIC  and request multiplexing, it's also dubious.

�. If  you can not, make the endpoint atomic and provide SDKs to help

partners avoid typical mistakes.

�. If  implementing an atomic endpoint is not possible, elaborate on the

API design thoroughly, keeping in mind the caveats we discussed.

1



�. Whichever option you choose, it is crucially important to include a

breakdown of  the sub-requests in the response. For atomic

endpoints, this entails ensuring that the error message contains a list

of  errors that prevented the request execution, ideally encompassing

the potential errors as well (i.e. , the results of  validity checks for all

the sub-requests). For non-atomic endpoints, it means returning a

list of  statuses corresponding to each sub-request along with errors

that occurred during the execution.

One of  the approaches that helps minimize potential issues is developing

a “mixed” endpoint, in which the operations that can a�ect each other are

grouped:

POST /v1/bulk-status-change
{
"changes": [{
"order_id": <first id>
// Operations related
// to a specific endpoint
// are grouped in a single
// structure and executed
// atomically
"operations": [
"refund",
"cancel"

    ]
  }, {

// Operation sets for
// different orders might
// be executed in parallel
// and non-atomically
"order_id": <second id>

    …
  }]
}

Let us also stress that nested operations (or sets of  operations) must be

idempotent per se. If  they are not, you need to somehow deterministically

generate internal idempotency tokens for each operation. The simplest

approach is to consider the internal token equal to the external one if  it is

possible within the subject area. Otherwise, you will need to employ some



constructed tokens — in our case, let's say, in the <order_id>:

<external_token> form.

References

QUIC: A UDP-Based Multiplexed and Secure Transport

datatracker.ietf.org/doc/html/rfc9000

1

https://datatracker.ietf.org/doc/html/rfc9000


Chapter 24. Partial Updates

The case of  partial application of  the list of  changes described in the

previous chapter naturally leads us to the next typical API design problem.

What if  the operation involves a low-level overwriting of  several data

�elds rather than an atomic idempotent procedure (as in the case of

changing the order status)? Let's take a look at the following example:

// Creates an order
// consisting of two beverages
POST /v1/orders/
X-Idempotency-Token: <token>
{
"delivery_address",
"items": [{
"recipe": "lungo"

  }, {
"recipe": "latte",
"milk_type": "oat"

  }]
}
→
{ "order_id" }

// Partially updates the order
// by changing the volume
// of the second beverage
PATCH /v1/orders/{id}
{
"items": [
// `null` indicates
// no changes for the
// first beverage
null,
// list of properties
// to change for
// the second beverage

    {"volume": "800ml"}
  ]
}
→
{ /* Changes accepted */ }



This signature is inherently �awed as its readability is dubious. What does

the empty �rst element in the array mean, deletion of  an element or

absence of  changes? What will happen with �elds that are not passed

(delivery_address, milk_type)? Will they reset to default values or

remain unchanged?

The most notorious thing here is that no matter which option you choose,

your problems have just begun. Let's say we agree that the "items":[null,

{…}]} construct means the �rst array element remains untouched. So how

do we delete it if  needed? Do we invent another “nullish” value speci�cally

to denote removal? The same issue applies to �eld values: if  skipping a

�eld in a request means it should remain unchanged, then how do we reset

it to the default value?

Partially updating a resource is one of  the most frequent tasks that API

developers have to solve, and unfortunately, it is also one of  the most

complicated. Attempts to take shortcuts and simplify the implementation

o�en lead to numerous problems in the future.

A trivial solution is to always overwrite the requested entity completely,

which means requiring the passing of  the entire object to fully replace the

current state and return the new one. However, this simple solution is

frequently dismissed due to several reasons:

Increased request sizes and, consequently, higher tra�c

consumption

The necessity to detect which �elds were actually changed in order to

generate proper signals (events) for change listeners

The inability to facilitate collaborative editing of  the object, meaning

allowing two clients to edit di�erent properties of  the object in

parallel as clients send the full object state as they know it and

overwrite each other's changes as they are unaware of  them.

To avoid these issues, developers sometimes implement a naïve solution:

Clients only pass the �elds that have changed



To reset the values of  certain �elds and to delete or skip array

elements some “special” values are used.

A full example of  an API implementing the naïve approach would look like

this:

// Partially rewrites the order:
//   * Resets the delivery address
//     to the default values
//   * Leaves the first beverage
//     intact
//   * Removes the second beverage.
PATCH /v1/orders/{id}
{
// “Special” value #1:
// reset the field
"delivery_address": null
"items": [
// “Special” value #2:
// do nothing to the entity
{},
// “Special” value #3:
// delete the entity
false

  ]
}

This solution allegedly solves the aforementioned problems:

Tra�c consumption is reduced as only the changed �elds are

transmitted, and unchanged entities are fully omitted (in our case,

replaced with the special value {}).

Noti�cations regarding state changes will only be generated for the

�elds and entities passed in the request.

If  two clients edit di�erent �elds, no access con�ict is generated and

both sets of  changes are applied.

However, upon closer examination all these conclusions seem less viable:



We have already described the reasons for increased tra�c

consumption (excessive polling, lack of  pagination and/or �eld size

restrictions) in the “Describing Final Interfaces” chapter, and these

issues have nothing to do with passing extra �elds (and if  they do, it

implies that a separate endpoint for “heavy” data is needed).

The concept of  passing only the �elds that have actually changed

shi�s the burden of  detecting which �elds have changed onto the

client developers' shoulders:

Not only does the complexity of  implementing the comparison

algorithm remain unchanged but we also run the risk of  having

several independent realizations.

The capability of  the client to calculate these di�s doesn't relieve

the server developers of  the duty to do the same as client

developers might make mistakes or overlook certain aspects.

Finally, the naïve approach of  organizing collaborative editing by

allowing con�icting operations to be carried out if  they don't touch

the same �elds works only if  the changes are transitive. In our case,

they are not: the result of  simultaneously removing the �rst element

in the list and editing the second one depends on the execution order.

O�en, developers try to reduce the outgoing tra�c volume as

well by returning an empty server response for modifying

operations. Therefore, two clients editing the same entity do not

see the changes made by each other until they explicitly refresh

the state, which further increases the chance of  yielding highly

unexpected results.

The solution could be enhanced by introducing explicit control sequences

instead of  relying on “magical” values and adding meta settings for the

operation (such as a �eld name �lter as it's implemented in gRPC over

Protobuf ). Here's an example:1



// Partially rewrites the order:
//   * Resets the delivery address
//     to the default values
//   * Leaves the first beverage
//     intact
//   * Removes the second beverage.
PATCH /v1/orders/{id}↵
// A meta filter: which fields
// are allowed to be modified

  ?field_mask=delivery_address,items
{
// “Special” value #1: reset the field
"delivery_address": {
// The `__` prefix is needed to avoid 
// collisions with real field names
"__operation": "reset"

  },
"items": [
// “Special” value #2:
// do nothing to the entity

    { "__operation": "skip" }, 
// “Special” value #3: delete the entity

    { "__operation": "delete" }
  ]
}

While this approach may appear more robust, it doesn't fundamentally

address the problems:

“Magical” values are replaced with “magical” pre�xes

The fragmentation of  algorithms and the non-transitivity of

operations persist.

Given that the format becomes more complex and less intuitively

understandable, we consider this enhancement dubious.

A more consistent solution is to split an endpoint into several

idempotent sub-endpoints, each having its own independent identi�er

and/or address (which is usually enough to ensure the transitivity of

independent operations). This approach aligns well with the

decomposition principle we discussed in the “Isolating Responsibility

Areas” chapter.



// Creates an order
// comprising two beverages
POST /v1/orders/
{
"parameters": {
"delivery_address"

  },
"items": [{
"recipe": "lungo"

  }, {
"recipe": "latte",
"milk_type": "oats"

  }]
}
→
{
"order_id", 
"created_at",
"parameters": {
"delivery_address"

  },
"items": [

    { "item_id", "status"}, 
    { "item_id", "status"}
  ]
}

// Changes the parameters
// of the second order
PUT /v1/orders/{id}/parameters
{ "delivery_address" }
→
{ "delivery_address" }

// Partially changes the order
// by rewriting the parameters
// of the second beverage
PUT /v1/orders/{id}/items/{item_id}
{ 
// All the fields are passed,
// even if only one has changed
"recipe", "volume", "milk_type"

}
→
{ "recipe", "volume", "milk_type" }



// Deletes one of the beverages
DELETE /v1/orders/{id}/items/{item_id}

Now to reset the volume �eld it is enough not to pass it in the PUT

items/{item_id}. Also note that the operations of  removing one beverage

and editing another one became transitive.

This approach also allows for separating read-only and calculated �elds

(such as created_at and status) from the editable ones without creating

ambivalent situations (such as what should happen if  the client tries to

modify the created_at �eld).

Applying this pattern is typically su�cient for most APIs that manipulate

composite entities. However, it comes with a price as it sets high standards

for designing the decomposed interfaces (otherwise a once neat API will

crumble with further API expansion) and the necessity to make many

requests to replace a signi�cant subset of  the entity's �elds (which implies

exposing the functionality of  applying bulk changes, the undesirability of

which we discussed in the previous chapter).

NB: While decomposing endpoints, it's tempting to split editable and

read-only data. Then the latter might be cached for a long time and there

will be no need for sophisticated list iteration techniques. The plan looks

great on paper; however, with API expansion, immutable data o�en ceases

to be immutable which is only solvable by creating new versions of  the

interfaces. We recommend explicitly pronouncing some data non-

modi�able in one of  the following two cases: either (1) it really cannot

become editable without breaking backward compatibility or (2) the

reference to the resource (such as, let's say, a link to an image) is fetched via

the API itself  and you can make these links persistent (i.e. , if  the image is

updated, a new link is generated instead of  overwriting the content the old

one points to).



Resolving Conflicts of Collaborative Editing

The idea of  applying changes to a resource state through independent

atomic idempotent operations looks attractive as a con�ict resolution

technique as well. As subcomponents of  the resource are fully overwritten,

it is guaranteed that the result of  applying the changes will be exactly what

the user saw on the screen of  their device, even if  they had observed an

outdated version of  the resource. However, this approach helps very little

if  we need a high granularity of  data editing as it's implemented in

modern services for collaborative document editing and version control

systems (as we will need to implement endpoints with the same level of

granularity, literally one for each symbol in the document).

To make true collaborative editing possible, a speci�cally designed format

for describing changes needs to be implemented. It must allow for:

Ensuring the maximum granularity (each operation corresponds to

one distinct user's action)

Implementing con�ict resolution policies.

In our case, we might take this direction:

POST /v1/order/changes
X-Idempotency-Token: <token>
{
// The revision the client
// observed when making
// the changes
"known_revision",
"changes": [{
"type": "set",
"field": "delivery_address",
"value": <new value>

  }, {
"type": "unset_item_field",
"item_id",
"field": "volume"

  }],
  …
}



This approach is much more complex to implement, but it is the only

viable technique for realizing collaborative editing as it explicitly re�ects

the exact actions the client applied to an entity. Having the changes in this

format also allows for organizing o�ine editing with accumulating

changes on the client side for the server to resolve the con�ict later based

on the revision history.

NB: One approach to this task is developing a set of  operations in which all

actions are transitive (i.e. , the �nal state of  the entity does not change

regardless of  the order in which the changes were applied). One example

of  such a nomenclature is a con�ict-free replicated data type (CRDT).

However, we consider this approach viable only in some subject areas, as

in real life, non-transitive changes are always possible. If  one user entered

new text in the document and another user removed the document

completely, there is no way to automatically resolve this con�ict that

would satisfy both users. The only correct way of  resolving this con�ict is

explicitly asking users which option for mitigating the issue they prefer.

References

Protocol Bu�ers. Field Masks in Update Operations

protobuf.dev/reference/protobuf/google.protobuf/#�eld-masks-updates

See “Con�ict-Free Replicated Data Type” ·

en.wikipedia.org/wiki/Con�ict-free_replicated_data_type or refer to

Shapiro, M. , Preguiça, N. , Baquero, C. , Zawirski, M. (2011), Con�ict-Free

Replicated Data Types

2

1

2

https://protobuf.dev/reference/protobuf/google.protobuf/#field-masks-updates
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type


Chapter 25. Degradation and Predictability

In the previous chapters, we repeatedly discussed that the background

level of  errors is not just unavoidable, but in many cases, APIs are

deliberately designed to tolerate errors to make the system more scalable

and predictable.

But let's ask ourselves a question: what does a “more predictable system”

mean? For an API vendor, the answer is simple: the distribution and

number of  errors are both indicators of  technical problems (if  the

numbers are growing unexpectedly) and KPIs for technical refactoring (if

the numbers are decreasing a�er the release).

However, for partner developers, the concept of  “API predictability”

means something completely di�erent: how solidly they can cover the API

use cases (both happy and unhappy paths) in their code. In other words,

how well one can understand based on the documentation and the

nomenclature of  API methods what errors might arise during the API

work cycle and how to handle them.

Why is optimistic concurrency control better than acquiring locks from

the partner's point of  view? Because if  the revision con�ict error is

received, it's obvious to a developer what to do about it: update the state

and try again (the easiest approach is to show the new state to the end user

and ask them what to do next). But if  the developer can't acquire a lock in a

reasonable time then… what useful action can they take? Retrying most

certainly won't change anything. Show something to the user… but what

exactly? An endless spinner? Ask the user to make a decision — give up or

wait a bit longer?



While designing the API behavior, it's extremely important to imagine

yourself  in the partner developer's shoes and consider the code they must

write to solve the arising issues (including timeouts and backend

unavailability). This book comprises many speci�c tips on typical

problems; however, you need to think about atypical ones on your own.

Here are some general pieces of  advice that might come in handy:

If  you can include recommendations on resolving the error in the

error response itself, do it unconditionally (but keep in mind there

should be two sets of  recommendations, one for the user who will see

the message in the application and one for the developer who will

�nd it in the logs)

If  errors emitted by some endpoint are not critical for the main

functionality of  the integration, explicitly describe this fact in the

documentation. Developers may not guess to wrap the corresponding

code in a try-catch block. Providing code samples and guidance on

what default value or behavior to use in case of  an error is even better.

Remember that no matter how exquisite and comprehensive your

error nomenclature is, a developer can always encounter a transport-

level error or a network timeout, which means they need to restore

the application state when the tips from the backend are not

available. There should be an obvious default sequence of  steps to

handle unknown problems.

Finally, when introducing new types of  errors, don't forget about old

clients that are unaware of  these new errors. The aforementioned

“default reaction” to obscure issues should cover these new scenarios.

In an ideal world, to help partners “degrade properly,” a meta-API should

exist, allowing for determining the status of  the endpoints of  the main

API. This way, partners would be able to automatically enable fallbacks if

some functionality is unavailable. In the real world, alas, if  a widespread

outage occurs, APIs for checking the status of  APIs are commonly

unavailable as well.



SECTION III. THE BACKWARD COMPATIBILITY

Chapter 26. The Backward Compatibility Problem
Statement

As usual, let's conceptually de�ne “backward compatibility” before we

start.

Backward compatibility is a feature of  the entire API system to be stable in

time. It means the following: the code that developers have written

using your API continues to work functionally correctly for a long

period of  time. There are two important questions regarding this

de�nition and two explanations:

�. What does “functionally correctly” mean?

It means that the code continues to serve its intended function which

is to solve users' problems. It does not necessarily mean that it

continues to work indistinguishably from the previous version. For

example, if  you're maintaining a UI library, making functionally

insigni�cant design changes like adjusting shadow depth or border

stroke type would still be considered backward-compatible unlike

changing the sizes of  the visual components.

�. What does “a long period of  time” mean?

From our point of  view, the backward compatibility maintenance

period should be aligned with the typical lifetime of  applications in

the subject area. Platform LTS (Long-Term Support) periods can serve

as helpful guidelines in most cases. Since applications will be

rewritten when the platform maintenance period ends, it is

reasonable to expect developers to transition to the new API version

as well. In mainstream subject areas such as desktop and mobile

operating systems, this period typically spans several years.



The de�nition makes it evident why maintaining backward compatibility

is crucial, including taking necessary measures at the API design stage. An

outage, whether full or partial, caused by an API vendor, is an extremely

inconvenient situation for every developer, if  not a disaster — especially if

they are paying for the API usage.

But let's take a look at the problem from another angle: why does the

problem of  maintaining backward compatibility exist in the �rst place?

Why would anyone want to break it? This question, though it may seem

trivial, is much more complicated than the previous one.

We could say that we break backward compatibility to introduce new features to the

API. However, this would be deceiving since new features are called “new”

for a reason — they cannot a�ect existing implementations that do not use

them. We must admit that there are several associated problems that lead

to the aspiration to rewrite our code, the code of  the API itself, and ship a

new major version:

The codebase eventually becomes outdated making it impractical to

introduce changes or even new functionality

The old interfaces are not suited to accommodate new features. We

would love to extend existing functionality with new properties, but

we simply cannot

Finally, with years passing since the initial release, we have gained a

better understanding of  the subject area and API best practices. We

would implement many things di�erently now.

These arguments can be summarized frankly as “API vendors do not want

to support old code.” However, this explanation is still incomplete. If

you're not planning to rewrite the API code to add new functionality or

even if  you're not planning to add it at all, you still need to release new API

versions, both minor and major.

NB: In this chapter, we don't make any di�erence between minor versions

and patches. “Minor version” means any backward-compatible API

release.



Let us remind the reader that an API is a bridge, a means of  connecting

di�erent programmable contexts. No matter how strong our desire is to

keep the bridge intact, our capabilities are limited: we can lock the bridge,

but we cannot command the ri�s and the canyon itself. That's the source

of  the problem: we can't guarantee that our own code won't change. So at

some point, we will have to ask the clients to rewrite their code.

Apart from our aspirations to change the API architecture, three other

tectonic processes are happening at the same time: user agents, subject

areas, and the erosion of  underlying platforms.

1. The Fragmentation of Consumer Applications

When you shipped the very �rst API version, and the initial clients started

using it, the situation was perfect. However, this perfection doesn't last,

and two scenarios are possible.

�. If  the platform allows for fetching code on-demand, like the good old

Web does, and you weren't too lazy to implement that code-on-

demand feature (in the form of  a platform SDK, such as JS API), then

the evolution of  your API is more or less under your control.

Maintaining backward compatibility e�ectively means keeping the

client library backward-compatible. As for client-server interaction,

you have freedom.

This doesn't mean that you can't break backward compatibility. You

can still make a mistake with cache-control headers or simply

overlook a bug in the code. Additionally, even code-on-demand

systems don't get updated instantly. The author of  this book faced a

situation where users deliberately kept a browser tab open for weeks to

avoid updates. However, in general, you usually don't have to support

more than two API versions — the latest one and the penultimate

one. Furthermore, you may consider rewriting the previous major

version of  the library, implementing it on top of  the actual API

version.



�. If  the code-on-demand feature isn't supported or is prohibited by the

platform, as is the case with modern mobile operating systems, the

situation becomes more severe. Each client e�ectively borrows a

snapshot of  the code that works with your API, frozen at the moment

of  compilation. Client application updates are scattered over time to a

much greater extent than Web application updates. The most painful

aspect is that some clients will never be up to date, due to one of  three

reasons:

Developers simply don't want to update the app, i.e. , its

development has stopped.

Users do not want to get updates (sometimes because they

believe that developers “spoiled” the app in new versions)

Users cannot get updates because their devices are no longer

supported.

In modern times these three categories combined could easily

constitute a signi�cant portion (tens of  percent) of  the audience. This

implies that discontinuing support for any API version could be a

nightmare experience — especially if  partners' apps continue

supporting a broader range of  platforms than the API does.

If  you have never issued an SDK, providing only server-side APIs, for

example in the form of  HTTP endpoints, you might think that the

backward compatibility problem is mitigated, although your API is

less competitive on the market due to the lack of  SDKs. However,

that's not what will happen. If  you don't provide an SDK, developers

will either adopt an uno�cial one (if  someone bothered to create it)

or write a framework themselves, independently. The “your

framework — your problems” strategy, fortunately or unfortunately,

works poorly. If  developers write low-quality code on top of  your

API, then your API itself  is of  low quality — de�nitely in the view of

developers and possibly in the view of  end-users if  the API's

performance within the app is visible to them.



Certainly, if  you provide stateless APIs that don't require client SDKs or

can be auto-generated from the spec, these problems will be much less

noticeable. However, they are not fully avoidable unless you never issue

any new API versions. If  you do, you will still have to deal with some

fragmentation of  users by API and SDK versions.

2. Subject Area Evolution

The other side of  the canyon is the underlying functionality that you

expose via the API. It is, of  course, not static and evolves in the following

ways:

New functionality emerges

Older functionality shuts down

Interfaces change.

As usual, the API provides an abstraction to a much more granular subject

area. In the case of  our co�ee machine API example, one might reasonably

expect new machine models to emerge, which will need to be supported by

the platform. New models o�en come with new APIs, making it

challenging to ensure their adoption while preserving the same high-level

API. In any case, the API's code needs to be altered, which may lead to

incompatibility, albeit unintentionally.

Let us also emphasize that vendors of  low-level APIs are not always as

committed to maintaining backward compatibility for their APIs (or any

so�ware they provide) as we hope you are. It is important to be aware that

keeping your API in an operational state, which involves writing and

supporting facades to the shi�ing subject area landscape, will be your

responsibility, sometimes posing quite sudden challenges.



3. Platform Drift

Finally, there is a third aspect to consider — the “canyon” you are crossing

over with a bridge of  your API. Developers write code that is executed in

an environment beyond your control, and it evolves. New versions of

operating systems, browsers, protocols, and programming language SDKs

emerge. New standards are being developed and new arrangements are

made, some of  which are backward-incompatible, and there is nothing

that can be done about that.

Older platform versions contribute to fragmentation just like older app

versions as developers (including the API developers) struggle to support

older platforms. At the same time, users face challenges with platform

updates. In many cases, they are unable to update their devices to newer

platform versions since newer platform versions require newer devices.

The most challenging aspect here is that not only does incremental

progress, in the form of  new platforms and protocols, necessitate changes

to the API, but also the vulgar in�uence of  trends. Several years ago

realistic 3D icons were popular, but since then, public taste has changed in

favor of  �at and abstract ones. UI component developers had to follow the

fashion, rebuilding their libraries by either shipping new icons or

replacing the old ones. Similarly, the current trend of  integrating the

“night mode” feature has become widespread, demanding changes in a

wide range of  APIs.



Backward-Compatible Specifications

In the case of  the API-�rst approach, the backward compatibility problem

adds another dimension: the speci�cation and code generation based on it.

It becomes possible to break backward compatibility without breaking the

spec (for example, by introducing eventual consistency instead of  strict

consistency) — and vice versa, modify the spec in a backward-

incompatible manner without changing anything in the protocol and

therefore not a�ecting existing integrations at all (for example, by

replacing additionalProperties: false with true in OpenAPI).

The question of  whether two speci�cation versions are backward-

compatible or not belongs to a gray zone, as speci�cation standards

themselves do not de�ne this. Generally speaking, the statement

“speci�cation change is backward-compatible” is equivalent to “any client

code written or generated based on the previous version of  the spec

continues to work correctly a�er the API vendor releases the new API

version implementing the new version of  the spec.” Practically speaking,

following this de�nition seems quite unrealistic as it is impossible to learn

the behavior of  every piece of  code-generating so�ware out there (for

instance, it's rather hard to say whether code generated based on a

speci�cation that includes the parameter additionalProperties: false

will still function properly if  the server starts returning additional �elds).

Thus, using IDLs to describe APIs with all the advantages they undeniably

bring to the �eld, leads to having one more aspect of  the technology dri�

problem: the IDL version and, more importantly, versions of  helper

so�ware based on it, are constantly and sometimes unpredictably

evolving. If  an API vendor employs the “code-�rst” approach, meaning

that the spec is generated based on the actual API code, the occurrence of

backward-incompatible changes in the “server code — spec — code-

generated SDK — client app” chain is only a matter of  time.



NB: We recommend sticking to reasonable practices such as not using

functionality that is controversial from a backward compatibility point of

view (including the above-mentioned additionalProperties: false)

and when evaluating the safety of  changes, considering spec-generated

code behaves just like manually written code. If  you �nd yourself  in a

situation of  unresolvable doubts, your only option is to manually check

every code generator to determine whether its output continues to work

with the new version of  the API.

Backward Compatibility Policy

To summarize the points discussed above:

You will have to deploy new API versions because of  the evolution of

apps, platforms, and subject areas. Di�erent areas evolve at di�erent

paces but never stop doing so.

This will result in the fragmentation of  the API versions across

di�erent platforms and apps.

You have to make decisions that greatly a�ect the sustainability of

your API from your customers' perspective.

Let's brie�y describe these decisions and the key factors to consider while

making them.

�. How o�en should new major API versions be released?

This is primarily a product question. A new major API version should

be released when a critical mass of  functionality is reached, meaning

a critical mass of  features that couldn't be introduced in the previous

API versions or would be too expensive to introduce. In stable

markets, this situation typically occurs once every several years. In

emerging markets, new major API versions might be shipped more

frequently, depending only on your ability to support the zoo of  the



previous versions. However, it is important to note that deploying a

new version before stabilizing the previous one, which commonly

takes several months up to a year, is always a troubling sign to

developers, as it means they risk dealing with API glitches

permanently.

�. How many major versions should be supported simultaneously?

Theoretically, all of  them. Practically, you should look at the size of  the

audience that continues to use older versions and develop guidelines

on when the support for those versions will end.

�. How many minor versions (within one major version) should be

supported simultaneously?

Regarding minor versions, there are two options:

If  you provide server-side APIs and compiled SDKs only, you

may basically choose not to expose minor versions at all (see

below). However, at some maturity stage, providing access to at

least the two latest versions becomes necessary.

If  you provide code-on-demand SDKs, it is considered good

practice to provide access to previous minor versions of  the SDK

for a period of  time su�cient for developers to test their

applications and address issues if  necessary. Since minor

changes do not require rewriting large portions of  code, it is

acceptable to align the lifecycle of  a minor version with the app

release cycle duration in your industry, which in the worst cases

may comprise several months.



Keeping Several API Versions

In modern professional so�ware development, especially when talking

about internal APIs, a new API version usually fully replaces the previous

one. If  any problems are found, it might be rolled back by releasing the

previous version, but the two builds never coexist. However, in the case of

public APIs, the more partner integrations there are, the more dangerous

this approach becomes.

Indeed, with the growth in the number of  users, the “rollback the API

version in case of  problems” paradigm becomes increasingly destructive.

For partners, the optimal solution is rigidly referencing the speci�c API

version — the one that had been tested (ideally, while also having the API

vendor seamlessly address security concerns and make their so�ware

compliant with newly introduced legislation).

NB: Based on the same considerations, providing beta (or maybe even

alpha) versions of  popular APIs becomes more and more desirable as well,

allowing partners to test upcoming versions and address possible issues in

advance.

The important (and undeniable) advantage of  the semver system is that it

provides proper version granularity:

Stating the �rst digit (major version) allows obtaining a backward-

compatible version of  the API.

stating two digits (major and minor versions) guarantees that

functionality added a�er the initial release will be available.

Finally, stating all three numbers (major version, minor version, and

patch) allows �xing a concrete API release with all its speci�cities

(and errors), which — theoretically — means that the integration will

remain operational until this version becomes physically unavailable.



Of  course, preserving minor versions inde�nitely is not possible (partly

because of  security and compliance issues that tend to accumulate).

However, providing such access for a reasonable period of  time is

considered a hygienic norm for popular APIs.

NB: Sometimes to defend the concept of  a single accessible API version,

the following argument is put forward: preserving the SDK or API

application server code is not enough to maintain strict backward

compatibility as it might rely on some unversioned services (for example,

data in the DB shared between all API versions). However, we consider this

an additional reason to isolate such dependencies (see “The Serenity

Notepad” chapter) as it means that changes to these subsystems might

result in the API becoming inoperable.



Chapter 27. On the Waterline of the Iceberg

Before we start talking about extensible API design, we should discuss the

hygienic minimum. Many problems would have never occurred if  API

vendors had paid more attention to clearly marking their area of

responsibility.

1. Provide a Minimal Amount of Functionality

At any given moment, your API is like an iceberg: it comprises an

observable (i.e. , documented) part and a hidden undocumented one. If  the

API is properly designed, these two parts correspond to each other just

like the above-water and under-water parts of  a real iceberg do, i.e. one to

ten. Why so? Because of  two obvious reasons.

Computers exist to make complicated things easy, not the other way

around. The code that developers write using your API should

describe a complicated problem's solution in neat and

straightforward sentences. If  developers have to write more code

than the API itself  comprises, then there is something rotten here.

It's possible that this API isn't needed at all.

Revoking API functionality causes losses. If  you have promised to

provide certain functionality, you will have to do so “forever” (or at

least until the maintenance period for that API version is over).

Pronouncing some functionality as deprecated can be tricky and may

alienate your customers.

The rule of  thumb is very simple: if  some functionality might be withheld,

then never expose it until you really need to. It might be reformulated as

follows: every entity, every �eld, and every public API method is a product

decision. There must be solid product reasons why certain functionality is

exposed.



2. Avoid Gray Zones and Ambiguities

Your obligations to maintain some functionality must be stated as clearly

as possible, especially when provided in environments and platforms

where there is no native capability to restrict access to undocumented

functionality. Unfortunately, developers o�en consider some private

features they “discover” as eligible for use, assuming the API vendor shall

maintain them intact. The policy regarding such “�ndings” must be

explicitly articulated. At the very least, in the case of  unauthorized usage

of  undocumented functionality, you can refer to the documentation and be

within your rights in the eyes of  the community.

However, API developers o�en legitimize these gray zones themselves. For

example, by:

Returning undocumented �elds in endpoint responses

Using private functionality in code samples: in the documentation,

responses to support inquiries, conference talks, etc.

One cannot make a partial commitment. Either you guarantee that the

code will always work or do not slip the slightest note that such

functionality exists.

3. Codify Implicit Agreements

The third principle is much less obvious. Pay close attention to the code

that you're suggesting developers write: are there any conventions that you

consider self-evident but never wrote down?

Example #1. Let's take a look at this order processing SDK example:

// Creates an order
let order = api.createOrder();
// Returns the order status
let status = api.getStatus(order.id);



Let's imagine that you're struggling with scaling your service, and at some

point switched to eventual consistency, as we discussed in the

corresponding chapter. What would be the result? The code above will stop

working. A user creates an order, then tries to get its status but receives an

error instead. It's very hard to predict what approach developers would

implement to tackle this error. They probably would not expect this to

happen at all.

You may say something like, “But we've never promised strict consistency

in the �rst place” — and that is obviously not true. You may say that if, and

only if, you have really described the eventual consistency in the

createOrder docs, and all your SDK examples look like this:

let order = api.createOrder();
let status;
while (true) {
try {

    status = api.getStatus(order.id);
  } catch (e) {

if (e.httpStatusCode != 404 ||
timeoutExceeded()) {
break;

    }
  }
}
if (status) {
  …
}

We presume we may skip the explanations of  why such code must never be

written under any circumstances. If  you're really providing a non-strictly

consistent API, then either the createOrder operation must be

asynchronous and return the result when all replicas are synchronized, or

the retry policy must be hidden inside the getStatus operation

implementation.



If  you failed to describe the eventual consistency in the �rst place, then

you simply couldn't make these changes in the API. You will e�ectively

break backward compatibility, which will lead to huge problems with your

customers' apps, intensi�ed by the fact that they can't be simply

reproduced by QA engineers.

Example #2. Take a look at the following code:

let resolve;
let promise = new Promise(

function (innerResolve) {
        resolve = innerResolve;
    }
);
resolve();

This code presumes that the callback function passed to a new Promise

will be executed synchronously, and the resolve variable will be

initialized before the resolve() function call is executed. But this

assumption is based on nothing: there are no clues indicating that the new

Promise constructor executes the callback function synchronously.

Of  course, the developers of  the language standard can a�ord such tricks;

but you as an API developer cannot. You must at least document this

behavior and make the signatures point to it. Actually, the best practice is

to avoid such conventions since they are simply not obvious when reading

the code. And of  course, under no circumstances dare you change this

behavior to an asynchronous one.

Example #3. Imagine you're providing an animations API, which includes

two independent functions:



// Animates object's width,
// beginning with the first value, 
// ending with the second
// in the specified time frame
object.animateWidth(
'100px', '500px', '1s'

);
// Observes the object's width changes
object.observe(
'widthchange', observerFunction

);

A question arises: how frequently and at what time fractions will the

observerFunction be called? Let's assume in the �rst SDK version we

emulated step-by-step animation at 10 frames per second. Then the

observerFunction will be called 10 times, getting values '140px',

'180px', etc. , up to '500px'. But then, in a new API version, we have

switched to implementing both functions atop the operating system's

native functionality. Therefore, you simply don't know when and how

frequently the observerFunction will be called.

Just changing the call frequency might result in making some code

dysfunctional. For example, if  the callback function performs some

complex calculations and no throttling is implemented because developers

relied on your SDK's built-in throttling. Additionally, if  the

observerFunction ceases to be called exactly when the '500px' value is

reached due to system algorithm speci�cs, some code will be broken

beyond any doubt.

In this example, you should document the concrete contract (how o�en

the observer function is called) and stick to it even if  the underlying

technology is changed.

Example #4. Imagine that customer orders are passing through a speci�c

pipeline:



GET /v1/orders/{id}/events/history
→
{ "event_history": [
  {

"iso_datetime": 
"2020-12-29T00:35:00+03:00",

"new_status": "created"
  }, {

"iso_datetime": 
"2020-12-29T00:35:10+03:00",

"new_status": "payment_approved"
  }, {

"iso_datetime": 
"2020-12-29T00:35:20+03:00",

"new_status": "preparing_started"
  }, {

"iso_datetime": 
"2020-12-29T00:35:30+03:00",

"new_status": "ready"
  }
]}

Suppose at some moment we decided to allow trustworthy clients to get

their co�ee in advance before the payment is con�rmed. So an order will

jump straight to "preparing_started" or even "ready" without a

"payment_approved" event being emitted. It might appear to you that this

modi�cation is backward-compatible since you've never really promised

any speci�c event order being maintained, but it is not.

Let's assume that a developer (probably your company's business partner)

wrote some code implementing valuable business procedures, for

example, gathering income and expenses analytics. It's quite logical to

expect this code operates a state machine that switches from one state to

another depending on speci�c events. This analytical code will be broken

if  the event order changes. In the best-case scenario, a developer will get

some exceptions and will have to cope with the error's cause. In the worst

case, partners will operate incorrect statistics for an inde�nite period of

time until they �nd the issue.



A proper decision would be, �rst, documenting the event order and the

allowed states; second, continuing to generate the "payment_approved"

event before the "preparing_started" one (since you're making a decision to

prepare that order, so you're in fact approving the payment) and add

extended payment information.

This example leads us to the last rule.

4. Product Logic Must Be Backward-Compatible as Well

The state transition graph, event order, possible causes of  status changes,

etc. — such critical things must be documented. However, not every piece

of  business logic can be de�ned in the form of  a programmable contract;

some cannot be represented in a machine-readable form at all.

Imagine that one day you start taking phone calls. A client may contact the

call center to cancel an order. You might even make this functionality

technically backward-compatible by introducing new �elds to the “order”

entity. But the end-user might simply know the number and call it even if

the app wasn't suggesting anything like that. The partner's business

analytical code might be broken as well or start displaying weather on

Mars since it was written without knowing about the possibility of

canceling orders in circumvention of  the partner's systems.

A technically correct decision would be to add a “canceling via call center

allowed” parameter to the order creation function. Conversely, call center

operators might only cancel those orders that were created with this �ag

set. But that would be a bad decision from a product point of  view because it

is not obvious to users that they can cancel some orders by phone and not

others. The only “good” decision in this situation is to foresee the

possibility of  external order cancellations in the �rst place. If  you haven't

foreseen it, your only option is the “Serenity Notepad” that will be

discussed in the last chapter of  this Section.



Chapter 28. Extending through Abstracting

In the previous chapters, we have attempted to outline theoretical rules

and illustrate them with practical examples. However, understanding the

principles of  designing change-proof  APIs requires practice above all else.

The ability to anticipate future growth problems comes from a handful of

grave mistakes once made. While it is impossible to foresee everything,

one can develop a certain technical intuition.

Therefore, in the following chapters, we will test the robustness of  our

study API from the previous Section, examining it from various

perspectives to perform a “variational analysis” of  our interfaces. More

speci�cally, we will apply a “What I�?” question to every entity, as if  we are

to provide a possibility to write an alternate implementation of  every piece

of  logic.

NB: In our examples, the interfaces will be constructed in a manner

allowing for dynamic real-time linking of  di�erent entities. In practice,

such integrations usually imply writing ad hoc server-side code in

accordance with speci�c agreements made with speci�c partners. But for

educational purposes, we will pursue more abstract and complicated ways.

Dynamic real-time linking is more typical in complex program constructs

like operating system APIs or embeddable libraries; giving educational

examples based on such sophisticated systems would be too inconvenient.

Let's start with the basics. Imagine that we haven't exposed any other

functionality but searching for o�ers and making orders, thus providing

an API with two methods: POST /offers/search and POST /orders.

Let us take the next logical step and suppose that partners will wish to

dynamically plug their own co�ee machines (operating some previously

unknown types of  API) into our platform. To allow doing so, we have to

negotiate a callback format that would allow us to call partners' APIs and

expose two new endpoints providing the following capabilities:



Registering new API types in the system

Providing the list of  the co�ee machines and their API types.

For example, we might provide a second API family (the partner-bound

one) with the following methods:

// 1. Register a new API type
PUT /v1/api-types/{api_type}
{
"order_execution_endpoint": {
// Callback function description

  }
}

// 2. Provide a list of coffee machines
// with their API types
PUT /v1/partners/{partnerId}/coffee-machines
{
"coffee_machines": [{
"api_type",
"location",
"supported_recipes"

  }, …]
}

So the mechanics are like this:

A partner registers their API types, co�ee machines, and supported

recipes.

With each incoming order, our server will call the callback function,

providing the order data in the stipulated format.

Now the partners might dynamically plug their co�ee machines in and get

the orders. But now we will do the following exercise:

Enumerate all the implicit assumptions we have made

Enumerate all the implicit coupling mechanisms we need to have the

platform functioning properly.



It may seem like there are no such things in our API since it's quite simple

and basically just describes making some HTTP calls, but that's not true.

�. It is implied that every co�ee machine supports every order option

like varying the beverage volume.

�. There is no need to display additional data to the end-user regarding

co�ee being brewed on these new co�ee machines.

�. The price of  the beverage doesn't depend on the selected partner or

co�ee machine type.

We have written down this list having one purpose in mind: we need to

understand how exactly we will make these implicit arrangements explicit

if  we need to. For example, if  di�erent co�ee machines provide di�erent

functionality — let's say, some of  them are capable of  brewing �xed

beverage volumes only — what would change in our API?

The universal approach to making such amendments is to consider the

existing interface as a reduction of  some more general one, as if  some

parameters were set to defaults and therefore omitted. So making a change

is always a three-step process:

�. Explicitly de�ne the programmatical contract as it works right now.

�. Extend the functionality: add a new method that allows for tackling

the restrictions set in the previous paragraph.

�. Pronounce the existing interfaces (those de�ned in #1) as “helpers” to

the new ones (those de�ned in #2) that pre-�ll some options with

default values.

More speci�cally, if  we talk about changing available order options, we

should do the following:

�. Describe the current state. All co�ee machines, plugged via the API,

must support three options: sprinkling with cinnamon, changing the

volume, and contactless delivery.

�. Add a new “with options” endpoint:



PUT /v1/partners/{partner_id}↵
  /coffee-machines-with-options
{
"coffee_machines": [{
"id",
"api_type",
"location",
"supported_recipes",
"supported_options": [

      {"type": "volume_change"}
    ]
  }, …]
}

�. Pronounce the PUT /coffee-machines endpoint as it currently

stands in the protocol as equivalent to calling PUT /coffee-

machines-with-options if  we pass those three options to it

(sprinkling with cinnamon, changing the volume, contactless

delivery) and therefore being a partial case — a helper to a more

general call.

Usually, just adding a new optional parameter to the existing interface is

enough; in our case, adding non-mandatory options to the PUT /coffee-

machines endpoint.

NB: When we talk about de�ning the contract as it works right now, we're

referring to internal agreements. We must have asked partners to support

those three options while negotiating the interaction format. If  we had

failed to do so from the very beginning and are now de�ning them during

the expansion of  the public API, it's a very strong claim to break backward

compatibility, and we should never do that (see the previous chapter).



Limits of Applicability

Though this exercise appears to be simple and universal, its consistent

usage is only possible if  the hierarchy of  entities is well-designed from the

very beginning and, more importantly, if  the direction of  further API

expansion is clear. Imagine that a�er some time has passed, the options

list has new items, such as adding syrup or a second espresso shot. We are

fully capable of  expanding the list, but not the defaults. As a result, the

“default” PUT /coffee-machines interface will eventually become

completely useless because the default set of  three options will no longer

be useful and will appear ridiculous: why these three options, what are the

selection criteria? In fact, the defaults and the method list re�ect the

historical stages of  our API development, which is not what one would

expect from the helpers and defaults nomenclature.

Alas, this dilemma can't be easily resolved. On one hand, we want

developers to write neat and concise code, so we must provide useful

helpers and defaults. On the other hand, we can't know in advance which

sets of  options will be the most useful a�er several years of  API evolution.

NB: We might conceal this problem in the following manner: one day

gather all these oddities and re-de�ne all the defaults with a single

parameter. For example, introduce a special method like POST /use-

defaults {"version": "v2"} that would overwrite all the defaults with

more suitable values. This would ease the learning curve, but it would

make your documentation even worse.

In the real world, the only viable approach to somehow tackle the problem

is weak entity coupling, which we will discuss in the next chapter.



Chapter 29. Strong Coupling and Related Problems

To demonstrate the problems of  strong coupling, let's move on to

interesting topics. Let's continue our “variation analysis”: what if  partners

wish to o�er their own unique co�ee recipes to end users in addition to the

standard beverages? The challenge is that the partner API, as described in

the previous chapter, does not expose the very existence of  the partner

network to the end user, thus presenting a simple case. However, once we

start providing methods to modify the core functionality, not just API

extensions, we will soon face next-level problems.

So, let's add one more endpoint for registering the partner's own recipe:

// Adds new recipe
POST /v1/recipes
{
"id",
"product_properties": {
"name",
"description",
"default_volume"
// Other properties to describe
// the beverage to an end user

    …
  }
}

At �rst glance, this appears to be a reasonably simple interface, explicitly

decomposed into abstraction levels. But let's imagine the future and

consider what would happen to this interface as our system evolves

further.

The �rst problem is obvious to those who thoroughly read the “Describing

Final Interfaces” chapter: product properties must be localized. This leads

us to the �rst change:



"product_properties": {
// "l10n" is the standard abbreviation
// for "localization"
"l10n": [{
"language_code": "en", 
"country_code": "US", 
"name", 
"description"

  }, /* other languages and countries */ … ]
}

And here arises the �rst big question: what should we do with the

default_volume �eld? On one hand, it's an objective property measured

in standardized units to be passed to the program execution engine. On

the other hand, in countries like the United States, beverage volumes are

speci�ed as “10 � oz” rather than “300 ml.” We can propose two solutions:

Either the partner provides only the corresponding number and we

will make readable descriptions ourselves, or

The partner provides both the number and all its localized

representations.

The �aw in the �rst option is that a partner might be willing to use the

service in a new country or language, but they will be unable to do so until

the API is localized to support these new territories. The �aw in the second

option is that it only works with prede�ned volumes, so ordering an

arbitrary beverage volume will not be possible. The very �rst step we've

taken e�ectively has had us trapped.

The localization �aws are not the only problem with this API. We should

ask ourselves a question: why do we really need these name and

description �elds? They are simply non-machine-readable strings with

no speci�c semantics. At �rst glance, we need them to return in the

/v1/search method response, but that's not a proper answer as it only

leads to another question: why do we actually return these strings from

search?



The correct answer lies beyond this speci�c interface. We need them

because some representation exists. There is a UI for choosing a beverage type.

The name and description �elds are probably two designations of  the

beverage for the user to read, a short one (to be displayed on the search

results page) and a long one (to be displayed in the extended product

speci�cation block). This means we are setting the API requirements based

on some speci�c visual design. But what if a partner is creating their own

UI for their own app? Not only might they not actually need two

descriptions, but we are also deceiving them. The name is not “just a name”

as it implies certain restrictions: it has a recommended length that is

optimal for a speci�c UI, and it must look consistent on the search results

page. Indeed, designations like “our best quality™ co�ee” or “Invigorating

Morning Freshness®” would look out of  place among “Cappuccino,”

“Lungo,” and “Latte.”

There is also another aspect to consider. As UIs (both ours and partners')

evolve, new visual elements will eventually be introduced. For example, a

picture of  the beverage, its energy value, allergen information, etc. The

product_properties entity will become a scrapyard for numerous

optional �elds, and learning how to set each �eld and its e�ects in the UI

will be an interesting journey �lled with trial and error.

The problems we're facing are the problems of  strong coupling. Each time we

o�er an interface as described above, we e�ectively dictate the

implementation of  one entity (recipe) based on the implementations of

other entities (UI layout, localization rules). This approach disregards the

fundamental principle of  “top to bottom” API design because low-level

entities should not de�ne high-level ones.



The Rule of Contexts

To exacerbate matters, let us state that the inverse principle is also true:

high-level entities should not de�ne low-level ones as well since it is not

their responsibility. The way out of  this logical labyrinth is that high-level

entities should de�ne a context for other objects to interpret. To properly

design the interfaces for adding a new recipe we should not attempt to �nd

a better data format. Instead, we need to understand the explicit and

implicit contexts that exist in our subject area.

We have already identi�ed a localization context. There is a set of

languages and regions supported by our API, and there are requirements

for what partners must provide to make the API work in a new region.

Speci�cally, there must be a formatting function to represent beverage

volume somewhere in our API code, either internally or within an SDK:

l10n.volume.format = function(
  value, language_code, country_code
) { … }
/* 
  l10n.formatVolume(
   '300ml', 'en', 'UK'
  ) → '300 ml'
  l10n.formatVolume(
    '300ml', 'en', 'US'
  ) → '10 fl oz'
*/

To ensure our API works correctly with a new language or region, the

partner must either de�ne this function or indicate which pre-existing

implementation to use through the partner API, like this:



// Add a general formatting rule
// for the Russian language
PUT /formatters/volume/ru
{
"template": "{volume} мл"

}
// Add a specific formatting rule
// for the Russian language 
// in the “US” region
PUT /formatters/volume/ru/US
{
// In the US, we need to recalculate
// the number and add a postfix
"value_transform": {
"action": "divide",
"divisor": 30

  },
"template": "{volume} ун."

}

so the aforementioned l10n.volume.format function implementation can

retrieve the formatting rules for the new language-region pair and utilize

them.

NB: We are well aware that such a simple format is not su�cient to cover

real-world localization use cases, and one would either rely on existing

libraries or design a sophisticated format for such templating, which takes

into account various aspects such as grammatical cases and rules for

rounding numbers or allows de�ning formatting rules in the form of

function code. The example above is simpli�ed for purely educational

purposes.

Let's address the name and description problem. To reduce the coupling

level, we need to formalize (probably just for ourselves) a “layout” concept.

We request the provision of  the name and description �elds not because

we theoretically need them but to present them in a speci�c user interface.

This particular UI might have an identi�er or a semantic name associated

with it:



GET /v1/layouts/{layout_id}
{
"id",
// Since we will likely have numerous
// layouts, it's better to enable 
// extensibility from the beginning
"kind": "recipe_search",
// Describe every property we require
// to have this layout rendered properly
"properties": [{
// Since we learned that `name`
// is actually a title for a search
// result snippet, it's much more
// convenient to have an explicit
// `search_title` instead
"field": "search_title",
"view": {
// A machine-readable description
// of how this field is rendered
"min_length": "5em",
"max_length": "20em",
"overflow": "ellipsis"

    }
  }, …],
// Which fields are mandatory
"required": [
"search_title", 
"search_description"

  ]
}

Thus, the partner can decide which option better suits their needs. They

can provide mandatory �elds for the standard layout:

PUT /v1/recipes/{id}/properties/l10n/{lang}
{
"search_title", "search_description"

}

Alternatively, they can create their own layout and provide the data �elds

it requires, or they may choose to design their own UI and not use this

functionality at all, thereby de�ning neither layouts nor corresponding

data �elds.

Ultimately, our interface would look like this:



POST /v1/recipes
{ "id" }
→
{ "id" }

This conclusion might seem highly counter-intuitive, but the absence of

�elds in a Recipe simply tells us that this entity possesses no speci�c

semantics of  its own. It serves solely as an identi�er of  a context, a way to

indicate where to �nd the data needed by other entities. In the real world,

we should implement a builder endpoint capable of  creating all the related

contexts with a single request:

POST /v1/recipe-builder
{
"id",
// Recipe's fixed properties
"product_properties": {
"default_volume", "l10n"

  },
// Create all the desired layouts
"layouts": [{
"id", "kind", "properties"

  }],
// Add all the required formatters
"formatters": {
"volume": [

      { "language_code", "template" }, 
      { "language_code", "country_code", 

"template" }
    ]
  },
// Other actions needed to register 
// a new recipe in the system

  …
}

We should also note that providing a newly created entity identi�er from

the requesting side is not the best practice. However, since we decided

from the very beginning to keep recipe identi�ers semantically

meaningful, we have to live on with this convention. Obviously, there is a

risk of  encountering collisions with recipe names used by di�erent



partners. Therefore, we actually need to modify this operation: either a

partner must always use a pair of  identi�ers (e.g. , the recipe id plus the

partner's own id), or we need to introduce composite identi�ers, as we

recommended earlier in the “Describing Final Interfaces” chapter.

POST /v1/recipes/custom
{
// The first part of the composite
// identifier, for example,
// the partner's own id
"namespace": "my-coffee-company",
// The second part of the identifier
"id_component": "lungo-customato"

}
→
{
"id": 
"my-coffee-company:lungo-customato"

}

Also note that this format allows us to maintain an important extensibility

point: di�erent partners might have both shared and isolated namespaces.

Furthermore, we might introduce special namespaces (like common, for

example) to allow editing standard recipes (and thus organizing our own

recipes backo�ce).

NB: A mindful reader might have noticed that this technique was already

used in our API study much earlier in the “Separating Abstraction Levels”

chapter regarding the “program” and “program run” entities. Indeed, we

can propose an interface for retrieving commands to execute a speci�c

recipe without the program-matcher endpoint, and instead, do it this way:

GET /v1/recipes/{id}/run-data/{api_type}
→
{ /* A description of how to
     execute a specific recipe
     using a specified API type */ }

Then developers would have to make this trick to get the beverage

prepared:



Learn the API type of  the speci�c co�ee machine.

Retrieve the execution description as described above.

Based on the API type, execute speci�c commands.

Obviously, such an interface is completely unacceptable because, in the

majority of  use cases, developers do not care at all about which API type

the speci�c co�ee machine exposes. To avoid the need for introducing such

poor interfaces we created a new “program” entity, which serves solely as a

context identi�er, just like a “recipe” entity does. Similarly, the

program_run_id entity is also organized in the same manner, without

possessing any speci�c properties and representing just a program run

identi�er.



Chapter 30. Weak Coupling

In the previous chapter, we demonstrated how breaking strong coupling of

components leads to decomposing entities and collapsing their public

interfaces down to a reasonable minimum. But let us return to the

question we previously mentioned in the “Extending through Abstracting”

chapter: how should we parametrize the order preparation process

implemented via a third-party API? In other words, what is the

order_execution_endpoint required in the API type registration

handler?

PUT /v1/api-types/{api_type}
{
  …
"order_execution_endpoint": {
// ???

  }
}

From general considerations, we may assume that every such API would

be capable of  executing three functions: running a program with speci�ed

parameters, returning the current execution status, and �nishing

(canceling) the order. An obvious way to provide the common interface is

to require these three functions to be executed via a remote call, let's say,

like this:



PUT /v1/api-types/{api_type}
{
  …
"order_execution_endpoint": {
"program_run_endpoint": {
/* Some description of

          the remote function call */
"type": "rpc",
"endpoint": <URL>,
"parameters"

    },
"program_get_state_endpoint",
"program_cancel_endpoint"

  }
}

NB: By doing so, we transfer the complexity of  developing the API onto the

plane of  developing appropriate data formats, i.e. , developing formats for

order parameters to the program_run_endpoint, determining what format

the program_get_state_endpoint shall return, etc. However, in this

chapter, we're focusing on di�erent questions.

Though this API looks absolutely universal, it's quite easy to demonstrate

how a once simple and clear API ends up being confusing and convoluted.

This design presents two main problems:

�. It nicely describes the integrations we've already implemented (it

costs almost nothing to support the API types we already know), but

it brings no �exibility to the approach. In fact, we simply described

what we had already learned, without even trying to look at the larger

picture.

�. This design is ultimately based on a single principle: every order

preparation might be codi�ed with these three imperative

commands.

We can easily disprove the second statement, which will uncover the

implications of  the �rst. Let's imagine, for example, that as the service

grows further, we decide to allow end-users to change the order a�er the

execution has started. For example, they may request a contactless

takeout. This would lead us to the creation of  a new endpoint, let's say,



program_modify_endpoint, and new di�culties in data format

development (as new �elds for contactless delivery requested and satis�ed

�ags need to be passed in both directions). What is important is that both

the endpoint and the new data �elds would be optional due to the

backward compatibility requirement.

Now let's try to imagine a real-world example that doesn't �t into our

“three imperatives to rule them all” picture. That's quite easy as well: what

if  we're plugging in a vending machine via our API instead of  a co�ee

house? On one hand, it means that the modify endpoint and all related

stu�  are simply meaningless: the contactless takeout requirement means

nothing to a vending machine. On the other hand, the machine, unlike the

people-operated café, requires takeout approval: the end-user places an

order while being somewhere else and then walks to the machine and

pushes the “get the order” button in the app. We might, of  course, require

the user to stand up in front of  the machine when placing an order, but

that would contradict the entire product concept of  users selecting and

ordering beverages and then walking to the takeout point.

Programmable takeout approval requires one more endpoint, let's say,

program_takeout_endpoint. And so we've lost our way in a forest of  �ve

endpoints:

To have vending machines integrated a partner must implement the

program_takeout_endpoint but doesn't need the

program_modify_endpoint.

To have regular co�ee houses integrated a partner must implement

the program_modify_endpoint but doesn't need the

program_takeout_endpoint.

Furthermore, we have to describe both endpoints in the documentation.

It's quite natural that the takeout endpoint is very speci�c; unlike

requesting contactless delivery, which we hid under the pretty general

modify endpoint, operations like takeout approval will require

introducing a new unique method every time. A�er several iterations, we



would have a scrapyard full of  similarly looking methods, mostly optional.

However, developers would still need to study the documentation to

understand which methods are needed in their speci�c situation and

which are not.

NB: In this example, we assumed that having the optional

program_takeout_endpoint value �lled serves as a �ag to the application

to display the “get the order” button. It would be better to add something

like a supported_flow �eld to the PUT /api-types/ endpoint to provide

an explicit �ag instead of  relying on this implicit convention. However,

this wouldn't change the problematic nature of  stockpiling optional

methods in the interface, so we skipped it to keep the examples concise.

We actually don't know whether in the real world of  co�ee machine APIs

this problem will occur or not. But we can say with con�dence that

regarding “bare metal” integrations, the processes we described always

happen. The underlying technology shi�s; an API that seemed clear and

straightforward becomes a trash bin full of  legacy methods, half  of  which

bear no practical sense under any speci�c set of  conditions. If  we add

technical progress to the situation, i.e. , imagine that a�er a while all co�ee

houses have become automated, we will �nally end up in a situation where

most methods aren't actually needed at all, such as requesting a contactless

takeout.

It is also worth mentioning that we unwittingly violated the principle of

isolating abstraction levels. At the vending machine API level, there is no

such thing as “contactless takeout” as it is actually a product concept.

So, how would we tackle this issue? We can use one of  two possible

approaches: either thoroughly study the entire subject area and its

upcoming improvements for at least several years ahead or abandon

strong coupling in favor of  a weak one. How would the ideal solution look

for both parties? Something like this:



The higher-level program API level doesn't actually know how the

execution of  its commands works. It formulates the tasks at its own

level of  understanding: brew this recipe, send the user's requests to a

partner, allow the user to collect their order.

The underlying program execution API level doesn't care about what

other same-level implementations exist. It just interprets those parts

of  the task that make sense to it.

If  we take a look at the principles described in the previous chapter, we

would �nd that this principle was already formulated: we need to describe

informational contexts at every abstraction level and design a mechanism to

translate them between levels. Furthermore, in a more general sense, we

formulated it as early as in the “Data Flow” paragraph of  the “Separating

Abstraction Levels” chapter.

In our case we need to implement the following mechanisms:

�unning a program creates a corresponding context comprising all

the essential parameters.

There is an information stream regarding the state modi�cations: the

execution level may read the context, learn about all the changes and

report back its own changes.

There are di�erent techniques to organize this data �ow (see the

corresponding chapter of  the “API Patterns” Section of  this book).

Basically, we always have two contexts and a two-way data pipe in

between. If  we were developing an SDK, we would express the idea with

emitting and listening events, like this:



/* Partner's implementation of the program
   run procedure for a custom API type */
registerProgramRunHandler(
  apiType, (program) => {

// Initiating an execution
// on the partner's side
let execution = initExecution(…);
// Listen to parent context changes

    program.context.on(
'takeout_requested', () => {
// If a takeout is requested, initiate
// required procedures
await execution.prepareTakeout();
// When the cup is ready for takeout,
// emit the corresponding event for 
// a higher-level entity to catch it

        execution.context.emit('takeout_ready');
      }
    );
    program.context.on(

'order_canceled', () => {
await execution.cancel();

        execution.context.emit('canceled');
      }
    );

return execution.context;
  }
);

NB: In the case of  an HTTP API, a corresponding example would look

rather bulky as it would require implementing several additional

endpoints for the message exchange like GET /program-run/events and

GET /partner/{id}/execution/events. We would leave this exercise to

the reader.

At this point, a mindful reader might begin protesting because if  we take a

look at the nomenclature of  the new entities, we will �nd that nothing

changed in the problem statement. It actually became even more

complicated:

Instead of  calling the takeout method, we're now generating a pair of

takeout_requested / takeout_ready events



Instead of  a long list of  methods that shall be implemented to

integrate the partner's API, we now have a long list of  context entities

and events they generate

And with regards to technological progress, we've changed nothing:

now we have deprecated �elds and events instead of  deprecated

methods.

And this remark is totally correct. Changing API formats doesn't solve any

problems related to the evolution of  functionality and underlying

technology. Changing API formats serves another purpose: to make the

code written by developers stay clean and maintainable. Why would

strong-coupled integration (i.e. , making entities interact via calling

methods) render the code unreadable? Because both sides are obliged to

implement functionality that is meaningless in their corresponding

subject areas. Code that integrates vending machines into the system must

respond “ok” to the contactless delivery request — so a�er a while, these

implementations would comprise a handful of  methods that just always

return true (or false).

The di�erence between strong coupling and weak coupling is that the

�eld-event mechanism isn't obligatory for both actors. Let us remember what

we sought to achieve:

A higher-level context doesn't know how the low-level API works —

and it really doesn't. It describes the changes that occur within the

context itself  and reacts only to those events that mean something to

it.

A low-level context doesn't know anything about alternative

implementations — and it really doesn't. It handles only those events

which mean something at its level and emits only those events that

could happen under its speci�c conditions.

It's ultimately possible that both sides would know nothing about each

other and wouldn't interact at all, and this might happen with the

evolution of  underlying technologies.



NB: In the real world, this might not be the case as we might want the

application to know whether the takeout request was successfully served

or not, i.e. , listen to the takeout_ready event and require the

takeout_ready �ag in the state of  the execution context. Still, the general

possibility of  not caring about the implementation details is a very

powerful technique that makes the application code much less complex —

of  course, unless this knowledge is important to the user.

One more important feature of  weak coupling is that it allows an entity to

have several higher-level contexts. In typical subject areas, such a

situation would look like an API design �aw, but in complex systems, with

several system state-modifying agents present, such design patterns are

not that rare. Speci�cally, you would likely face it while developing user-

facing UI libraries. We will cover this issue in detail in the “SDK and UI

Libraries” section of  this book.



The Inversion of Responsibility

It becomes obvious from what was said above that two-way weak coupling

means a signi�cant increase in code complexity on both levels, which is

o�en redundant. In many cases, two-way event linking might be replaced

with one-way linking without signi�cant loss of  design quality. That

means allowing a low-level entity to call higher-level methods directly

instead of  generating events. Let's alter our example:

/* Partner's implementation of the program
   run procedure for a custom API type */
registerProgramRunHandler(
  apiType, (program) => {

// Initiating an execution
// on the partner's side
let execution = initExecution(…);
// Listen to parent context changes

    program.context.on(
'takeout_requested', () => {
// If a takeout is requested, initiate
// corresponding procedures
await execution.prepareTakeout();
/* When the order is ready 

           for takeout, signalize that
           by calling the parent context 
           method, not with event emitting */

// execution.context
//   .emit('takeout_ready')
program.context.set('takeout_ready');
// Or even more rigidly
// program.setTakeoutReady();

      }
    );

// Since we're modifying the parent 
// context instead of emitting events, 
// we don't actually need to return anything

  }
);

Again, this solution might look counter-intuitive, since we e�ciently

returned to strong coupling via strictly de�ned methods. But there is an

important di�erence: we're bothering ourselves with weak coupling

because we expect alternative implementations of  the lower abstraction

level to pop up. Situations with di�erent realizations of  higher abstraction



levels emerging are, of  course, possible but quite rare. The tree of

alternative implementations usually grows from root to leaves.

Another reason to justify this solution is that major changes occurring at

di�erent abstraction levels have di�erent weights:

If  the technical level is under change, that must not a�ect product

qualities and the code written by partners.

If  the product is changing, e.g. , we start selling �ight tickets instead

of  preparing co�ee, there is literally no sense in preserving backward

compatibility at technical abstraction levels. Ironically, we may

actually make our API sell tickets instead of  brewing co�ee without

breaking backward compatibility, but the partners' code will still

become obsolete.

In conclusion, as higher-level APIs are evolving more slowly and much

more consistently than low-level APIs, reverse strong coupling might

o�en be acceptable or even desirable, at least from the price-quality ratio

point of  view.

NB: Many contemporary frameworks explore a shared state approach,

Redux being probably the most notable example. In the Redux paradigm,

the code above would look like this:

program.context.on(
'takeout_requested', 
() => {
await execution.prepareTakeout();
// Instead of generating events
// or calling higher-level methods,
// an `execution` entity calls 
// a global or quasi-global `dispatch`
// callback to change a global state
dispatch(takeoutReady());

  }
);



Let us note that this approach in general doesn't contradict the weak

coupling principle but violates another one — abstraction levels isolation

— and therefore isn't very well suited for writing branchy APIs with high

hierarchy trees. In such systems, it's still possible to use a global or quasi-

global state manager, but you need to implement event or method call

propagation through the hierarchy, i.e. , ensure that a low-level entity

always interacts with its closest higher-level neighbors only, delegating

the responsibility of  calling high-level or global methods to them.

program.context.on(
'takeout_requested', 
() => {
await execution.prepareTakeout();
// Instead of calling the global
// `dispatch` method,  an `execution`
// entity invokes its superior's 
// dispatch functionality

    program.context.dispatch(takeoutReady());
  }
);

// program.context.dispatch implementation
ProgramContext.dispatch = (action) => {
// program.context calls its own
// superior or global object
// if there are no superiors

  globalContext.dispatch(
// The action itself may and
// must be reformulated
// in appropriate terms
this.generateAction(action)

  );
}



Delegate!

Based on what was said, one more important conclusion follows: doing a

real job, i.e. , implementing concrete actions (making co�ee, in our case)

should be delegated to the lower levels of  the abstraction hierarchy. If  the

upper levels try to prescribe implementation algorithms, then (as

demonstrated in the example of  order_execution_endpoint) we will soon

face a situation of  inconsistent methods, most of  which have no speci�c

meaning when applied to a particular hardware context.

On the other hand, by following the paradigm of  concretizing the contexts

at each new abstraction level, we will eventually fall into the bunny hole

deep enough to have nothing more to concretize: the context itself

unambiguously matches the functionality we can programmatically

control. At that level, we should stop detailing contexts further and focus

on implementing the necessary algorithms. It's worth mentioning that the

depth of  abstraction may vary for di�erent underlying platforms.

NB: In the “Separating Abstraction Levels” chapter we illustrated exactly

this: when we talk about the �rst co�ee machine API type, there is no need

to extend the tree of  abstractions beyond running programs. However,

with the second API type, we need one more intermediary abstraction

level, namely the runtimes API.



Chapter 31. Interfaces as a Universal Pattern

Let us summarize what we have written in the three previous chapters:

�. Extending API functionality is implemented through abstracting: the

entity nomenclature is to be reinterpreted so that existing methods

become partial simpli�ed cases of  more general functionality, ideally

representing the most frequent scenarios.

�. Higher-level entities are to be the informational contexts for low-

level ones, meaning they don't prescribe any speci�c behavior but

rather translate their state and expose functionality to modify it,

either directly through calling some methods or indirectly through

�ring events.

�. Concrete functionality, such as working with “bare metal” hardware

or underlying platform APIs, should be delegated to low-level

entities.

NB: There is nothing novel about these rules: one might easily recognize

them as the SOLID architecture principles . This is not surprising either, as

SOLID focuses on contract-oriented development, and APIs are contracts

by de�nition. We have simply introduced the concepts of  “abstraction

levels” and “informational contexts” to these principles.

However, there remains an unanswered question: how should we design

the entity nomenclature from the beginning so that extending the API

won't result in a mess of  assorted inconsistent methods from di�erent

stages of  development? The answer is quite obvious: to avoid clumsy

situations during abstracting (as with the recipe properties), all the

entities must be originally considered as speci�c implementations of  a

more general interface, even if  there are no planned alternative

implementations for them.

1



For example, while designing the POST /search API, we should have asked

ourselves a question: what is a “search result”? What abstract interface

does it implement? To answer this question we need to decompose this

entity neatly and identify which facet of  it is used for interacting with

which objects.

Then we would have come to the understanding that a “search result” is

actually a composition of  two interfaces:

When creating an order, we need the search result to provide �elds

that describe the order itself, which could be a structure like:

{coffee_machine_id, recipe_id, volume, currency_code,

price},

or we can encode this data in the single offer_id.

When displaying search results in the app, we need a di�erent data

set: name, description, and formatted and localized prices.

So our interface (let's call it ISearchResult) is actually a composition of

two other interfaces: IOrderParameters (an entity that allows for creating

an order) and ISearchItemViewParameters (an abstract representation of

the search result in the UI). This interface split should naturally lead us to

additional questions:

�. How will we couple the former and the latter? Obviously, these two

sub-interfaces are related: the machine-readable price must match

the human-readable one, for example. This will naturally lead us to

the “formatter” concept described in the “Strong Coupling and

Related Problems” chapter.

�. And what constitutes the “abstract representation of  a search result

in the UI”? Do we have other types of  search? Should the

ISearchItemViewParameters interface be a subtype of  some even

more general interface, or maybe a composition of  several such

interfaces?



Replacing speci�c implementations with interfaces not only allows us to

respond more clearly to many concerns that arise during the API design

phase but also helps us outline many possible directions for API evolution.

This approach should assist us in avoiding API inconsistency problems in

the future.

References

See “SOLID” · en.wikipedia.org/wiki/SOLID or refer to

Martin, R. C. (2023), 12. Solid

1

https://en.wikipedia.org/wiki/SOLID


Chapter 32. The Serenity Notepad

Apart from the abovementioned abstract principles, let us give a list of

concrete recommendations on how to make changes in existing APIs to

maintain backward compatibility

1. Remember the Iceberg's Waterline

If  you haven't given any formal guarantee, it doesn't mean that you can

violate informal ones. O�en, just �xing bugs in APIs might render some

developers' code inoperable. We can illustrate this with a real-life example

that the author of  this book actually faced once:

There was an API to place a button into a visual container. According

to the docs, it was taking its position (o�sets to the container's corner)

as a mandatory argument.

In reality, there was a bug: if  the position was not supplied, no

exception was thrown. Buttons were simply stacked in the corner one

a�er another.

A�er the error had been �xed, we received a bunch of  complaints:

clients had really used this �aw to stack the buttons in the container's

corner.

If  �xing an error might somehow a�ect real customers, you have no other

choice but to emulate this erroneous behavior until the next major release.

This situation is quite common when you develop a large API with a huge

audience. For example, operating system developers literally have to

transfer old bugs to new OS versions.



2. Test the Formal Interface

Any so�ware must be tested, and APIs are no exception. However, there

are some subtleties involved: as APIs provide formal interfaces, it's the

formal interfaces that need to be tested. This leads to several kinds of

mistakes:

�. O�en, requirements like “the getEntity function returns the value

previously set by the setEntity function” appear to be too trivial for

both developers and QA engineers to have a proper test. But it's quite

possible to make a mistake there, and we have actually encountered

such bugs several times.

�. The interface abstraction principle must also be tested. In theory, you

might have considered each entity as an implementation of  some

interface; in practice, it might happen that you have forgotten

something and alternative implementations aren't actually possible.

For testing purposes, it's highly desirable to have an alternative

realization, even a provisional one, for every interface.

3. Isolate the Dependencies

In the case of  a gateway API that provides access to some underlying API

or aggregates several APIs behind a single façade, there is a strong

temptation to proxy the original interface as is, thus not introducing any

changes to it and making life much simpler by sparing the e�ort needed to

implement the weak-coupled interaction between services. For example,

while developing program execution interfaces as described in the

“Separating Abstraction Levels” chapter we might have taken the existing

�rst-kind co�ee-machine API as a role model and provided it in our API

by just proxying the requests and responses as is. Doing so is highly

undesirable because of  several reasons:



Usually, you have no guarantees that the partner will maintain

backward compatibility or at least keep new versions more or less

conceptually akin to the older ones.

Any partner's problem will automatically ricochet into your

customers.

The best practice is quite the opposite: isolate the third-party API usage,

i.e. , develop an abstraction level that will allow for:

Keeping backward compatibility intact because of  extension

capabilities incorporated in the API design.

Negating partner's problems by technical means:

Limiting the partner's API usage in case of  load surges

Implementing retry policies or other methods of  recovering

a�er failures

Caching some data and states to have the ability to provide some

(at least partial) functionality even if  the partner's API is fully

unreachable

Finally, con�guring an automatic fallback to another partner or

alternative API.

4. Implement Your API Functionality Atop Public Interfaces

There is an antipattern that occurs frequently: API developers use some

internal closed implementations of  some methods that exist in the public

API. It happens because of  two reasons:

O�en the public API is just an addition to the existing specialized

so�ware, and the functionality, exposed via the API, isn't being

ported back to the closed part of  the project, or the public API

developers simply don't know the corresponding internal

functionality exists.



In the course of  extending the API, some interfaces become abstract,

but the existing functionality isn't a�ected. Imagine that while

implementing the PUT /formatters interface described in the “Strong

Coupling and Related Problems” chapter API developers have created

a new, more general version of  the volume formatter but haven't

changed the implementation of  the existing one, so it continues

working for pre-existing languages.

There are obvious local problems with this approach (like the

inconsistency in functions' behavior or the bugs that were not found while

testing the code), but also a bigger one: your API might be simply unusable

if  a developer tries any non-mainstream approach because of

performance issues, bugs, instability, etc. , as the API developers

themselves never tried to use this public interface for anything important.

NB: The perfect example of  avoiding this anti-pattern is the development

of  compilers. Usually, the next compiler's version is compiled with the

previous compiler's version.

5. Keep a Notepad

Whatever tips and tricks described in the previous chapters you use, it's

o�en quite probable that you can't do anything to prevent API

inconsistencies from piling up. It's possible to reduce the speed of  this

stockpiling, foresee some problems, and have some interface durability

reserved for future use. But one can't foresee everything. At this stage, many

developers tend to make some rash decisions, e.g. , releasing a backward-

incompatible minor version to �x some design �aws.

We highly recommend never doing that. Remember that the API is also a

multiplier of  your mistakes. What we recommend is to keep a serenity

notepad — to write down the lessons learned and not to forget to apply

this knowledge when a new major API version is released.



SECTION IV. HTTP APIS & THE REST
ARCHITECTURAL PRINCIPLES

Chapter 33. On the HTTP API Concept. Paradigms of
Developing Client-Server Communication

The problem of  designing HTTP APIs is, unfortunately, one of  the most

“holywar”-inspiring issues. On one hand, it is one of  the most popular

technologies; on the other hand, it is quite complex and di�cult to

comprehend due to the large and fragmented standard split into many

RFCs. As a result, the HTTP speci�cation is doomed to be poorly

understood and imperfectly interpreted by millions of  so�ware engineers

and thousands of  textbook writers. Therefore, before proceeding to the

useful part of  this Section, we must clarify exactly what we are going to

discuss.

Let's start with a short historical overview. Performing users' requests on a

remote server has been one of  the basic tasks in so�ware engineering

since mainframes, and it naturally gained additional momentum with the

development of  ARPANET. The �rst high-level protocol for network

communication worked in the paradigm of  sending messages over the

network (as an example, see the DEL protocol that was proposed in one of

the very �rst RFCs — RFC-5 published in 1969 ). However, scholars quickly

understood that it would be much more convenient if  calling a remote

server and accessing remote resources wasn't any di�erent from working

with local memory and resources in terms of function signatures. This concept

was strictly formulated under the name “Remote Procedure Call” (RPC) by

Bruce Nelson, an employee of  the famous Xerox Palo Alto Research Center

in 1981.  Nelson was also the co-author of  the �rst practical

implementation of  the proposed paradigm, namely Sun RPC , which

still exists as ONC RPC.

1

2

3·4



First widely adopted RPC protocols (such as the aforementioned Sun RPC,

Java RMI , and CORBA ) strictly followed the paradigm. The technology

allowed achieving exactly what Nelson was writing about — that is,

making no di�erence between local and remote code execution. The

“magic” is hidden within tooling that generates the implementation of

working with remote servers, and developers don't need to know how the

protocol works.

However, the convenience of  using the technology became its Achilles

heel:

The requirement of  working with remote calls similarly to local ones

results in the high complexity of  the protocol as it needs to support

various features of  high-level programming languages.

First-generation RPC protocols dictate the use of  speci�c languages

and platforms for both the client and the server:

Sun RPC didn't support the Windows platform.

Java RMI required a Java virtual machine to run.

Some protocols (notably, CORBA) declared the possibility of

developing adapters to support any language. However,

practically implementing such adapters proved to be

complicated.

Proxying requests and sharding data are complicated because these

operations require reading and parsing the request body, which could

be costly.

The possibility of  addressing objects in the remote server's memory

just like the local ones implies huge restrictions on scaling such a

system.

Interestingly enough, no signi�cant RPC protocol included the

memory sharing feature. However, the possibility to do this was

included in the design of  some of  them (notably, Sun RPC).

5 6



The ideological crisis of  RPC approaches, which became apparent with the

rise of  mass client-server applications that prioritize scalability and

performance over convenience for developers, coincided with another

important process — the standardization of  network protocols. In the

beginning of  the '90s, there were still a plethora of  di�erent

communication formats; however, the network stack had eventually

uni�ed around two important attractors. One of  them was the Internet

Protocol Suite, which comprises the IP protocol as a base and an additional

layer on top of  it in the form of  either the TCP or UDP protocol. Today,

alternatives to the TCP/IP stack are used for a very limited subset of

engineering tasks.

However, from a practical standpoint, there is a signi�cant inconvenience

that makes using raw TCP/IP protocols much less practical. They operate

over IP addresses which are poorly suited for organizing distributed

systems:

Firstly, humans are not adept at remembering IP addresses and

prefer readable names

Secondly, an IP address is a technical entity bound to a speci�c

network node while developers require the ability to add or modify

nodes without having to modify the code of  their applications.

The domain name system, which allows for assigning human-readable

aliases to IP addresses, has proved to be a convenient abstraction with

almost universal adoption. Introducing domain names necessitated the

development of  new protocols at a higher level than TCP/IP. For text

(hypertext) data this protocol happened to be HTTP 0.9  developed by Tim

Berners-Lee and published in 1991. Besides enabling the use of  network

node names, HTTP also provided another useful abstraction: assigning

separate addresses to endpoints working on the same network node.

7



Initially, the protocol was very simple and merely described a method of

retrieving a document by establishing a TCP/IP connection to the server

and passing a string in the GET document_address format. Subsequently,

the protocol was enhanced by the Universal Resource Locator (URL)

standard for document addresses. A�er that, the protocol evolved rapidly:

new verbs, response statuses, headers, data types, and other features

emerged in a short time.

HTTP was developed to transfer hypertext which poorly �ts for developing

program interfaces. However, loose HTML quickly evolved into strict and

machine-readable XML, which became one of  the most widespread

standards for describing API calls. (Starting from the 2000s, XML was

gradually replaced by much simpler and interoperable JSON.)

On one hand, HTTP was a simple and easily understandable protocol for

making arbitrary calls to remote servers using their domain names. On the

other hand, it quickly gained a wide range of  extensions beyond its base

functionality. Eventually, HTTP became another “attractor” where all the

network technology stacks converge. Most API calls within TCP/IP

networks are made through the HTTP protocol. However, unlike the

TCP/IP case, it is each developer's own choice which parts of  the

functionality provided by the HTTP protocol and its numerous extensions

they are going to use. Remarkably enough, HTTP was a full antithesis to

RPC as it does not provide any native wrappers to make remote calls, let

alone memory sharing. Instead, HTTP provided some useful concepts to

improve the scalability of  client-server systems, such as managing caches

out of  the box and the idea of  transparent proxies.

As a result, starting from the mid-'90s, RPC frameworks were gradually

abolished in favor of  a new approach, to which Roy Fielding in his doctoral

dissertation of  2000 gave the name “Representational State Transfer” or

“REST” (to be discussed in the corresponding chapter). In the new

paradigm, the relations between data and operations on it were inversed:



Clients do not call procedures on a remote server, passing the call

parameters. Instead, they provide an abstract address (a locator) of  a

data fragment (a resource) to which the operation is to be applied.

The list of  operations is restricted to a limited and standardized

number of  actions with clearly de�ned semantics.

The client and the server are independent and, in principle, do not

share any state — any parameters needed to ful�ll the operation must

be transmitted explicitly.

There could be several intermediary agents, such as proxies or

gateways, between the client and the server, which should not

a�ect the interaction protocol in any way.

If  URLs contain all important parameters (resource identi�ers,

in particular), it is relatively easy to organize data sharding.

The server marks the caching options for the responses (resource

representations). The client (and intermediary proxies) can cache the

data according to these markings.

NB: switching from architectures where clients and servers are tightly

coupled to resource-oriented stateless solutions created the concept of

designing client-server APIs as it became mandatory to specify the contract

between the server and the client. In the early RPC paradigm, referring to

API design makes no sense, as the code that developers were writing

e�ectively was the interaction API, and developers had no need to care

about underlying protocols.

Although the new approach appeared quite convenient from the

perspective of  developing highly performant services, the problem of

working with declarative APIs in imperative programming languages did

not go away. Additionally, the once simple standard quickly became a

Frankenstein monster, stitched together from dozens of  various

fragmented sub-standards. We don't think we will exaggerate if  we say no

developer in the world knows the entire HTTP standard with all its

additional RFCs.



Starting from the 2010s, there has been an ongoing boom of  new-

generation RPC technologies — although it would be more correct to say

“composite technologies” — that are convenient to use in imperative

programming languages (as they come with the necessary tooling to

e�ectively use code generation), interoperable (working on top of  fully

standardized protocols that do not depend on any speci�c language), and

scalable (providing the abstracted notion of  shared resources and

disallowing remote memory access).

Today, a modern API that follows the REST architectural style and a

modern RPC protocol ideologically di�er only in their approaches to

marking cacheable data and addressing. In the former, a resource is the

addressing unit while the operation parameters are provided in addition;

in the latter, the name of  the operation is addressable while the identi�ers

of  the resources are passed as additional parameters.

In the next chapter, we will discuss speci�c widely adopted technologies,

but here we need to emphasize an important fact: almost all modern

high-level protocols (with MQTT being a notable exception) work on

top of  the HTTP protocol. So most modern RPC technologies are at the

same time HTTP APIs.

However, the term “HTTP API” is not usually treated as a synonym for “any

API that utilizes the HTTP protocol.” When we refer to HTTP APIs, we

rather imply that HTTP is used not as a third additional quasi-transport

layer protocol (as it happens in the case of  second-generation RPC

protocols) but as an application-level protocol, meaning its components

(such as URL, headers, HTTP verbs, status codes, caching policies, etc.) are

used according to their respective semantics. We also likely imply that

some textual data format (JSON or XML) is used to describe procedure

calls.

In this Section, we will discuss client-server APIs with the following

properties:

The interaction protocol is HTTP version 1.1 or higher



The data format is JSON (excluding endpoints speci�cally designed to

provide data in other formats, usually �les)

The endpoints (resources) are identi�ed by their URLs in accordance

with the standard

The semantics of  HTTP calls match the speci�cation

None of  the Web standards is intentionally violated.

We will refer to such APIs as “HTTP APIs” or “JSON-over-HTTP APIs.” We

understand that this is a loose interpretation of  the term, but we prefer to

live with that rather than using phrases like “JSON-over-HTTP endpoints

utilizing the semantics described in the HTTP and URL standards” or “a

JSON-over-HTTP API complying with the REST architectural constraints”

each time. As for the term “REST API,” it lacks a consistent de�nition (as

we will discuss in the corresponding chapter), so we would avoid using it

as well.

References

RFC-5. DEL

datatracker.ietf.org/doc/html/rfc5

Nelson, B. J. (1981), Remote Procedure Call

Birrell, A. D. , Nelson, B. J. (1984), Implementing Remote Procedure Calls

RPC: Remote Procedure Call Protocol Speci�cation

datatracker.ietf.org/doc/html/rfc1050

Remote Method Invocation (RMI)

www.oracle.com/java/technologies/javase/remote-method-invocation-home.html

CORBA

www.corba.org

The Original HTTP as de�ned in 1991

www.w3.org/Protocols/HTTP/AsImplemented.html

1

2

3

4

5

6

7

https://datatracker.ietf.org/doc/html/rfc5
https://datatracker.ietf.org/doc/html/rfc1050
https://www.oracle.com/java/technologies/javase/remote-method-invocation-home.html
https://www.corba.org/
https://www.w3.org/Protocols/HTTP/AsImplemented.html


Chapter 34. Advantages and Disadvantages of HTTP
APIs Compared to Alternative Technologies

As we discussed in the previous chapter, today, the choice of  a technology

for developing client-server APIs comes down to selecting either a

resource-oriented approach (commonly referred to as “REST API”; let us

reiterate that we will use the term “HTTP API” instead) or a modern RPC

protocol. As we mentioned earlier, conceptually the di�erence is not that

signi�cant. However, technically these frameworks use the HTTP protocol

quite di�erently:

First, di�erent frameworks rely on di�erent data formats:

HTTP APIs and some RPC protocols (such as JSON-RPC , GraphQL ,

etc.) use the JSON  format (sometimes with additional endpoints for

transferring binary data).

gRPC  and some specialized RPC protocols like Thri�  and Avro

utilize binary formats (such as Protocol Bu�ers , FlatBu�ers , or Apache

Avro's own format).

Finally, some RPC protocols (notably SOAP  and XML-RPC ) employ

the XML  data format (which is considered a rather outdated practice

by many developers).

Second, these approaches utilize HTTP capabilities di�erently:

Either the client-server interaction heavily relies on the features

described in the HTTP standard, or

HTTP is used as a transport, with an additional abstraction layer built

upon it (i.e. , the HTTP capabilities, such as headers and status codes

nomenclatures, are deliberately reduced to a bare minimum, and all

metadata is handled by the higher-level protocol).

1 2

3

4 5 6

7 8

9 10

11



The reader may wonder why this dichotomy exists in the �rst place, i.e. ,

why some HTTP APIs rely on HTTP semantics, while others reject it in

favor of  custom arrangements, and still others are stuck somewhere in

between. For example, if  we consider the JSON-RPC response format,  we

quickly notice that it could be replaced with standard HTTP protocol

functionality. Instead of  this:

HTTP/1.1 200 OK

{
"jsonrpc": "2.0",
"id",
"error": {
"code": -32600,
"message": "Invalid request"

  }
}

the server could have simply responded with a 400 Bad Request, passing

the request identi�er as a custom header like X-JSONRPC2-RequestId.

Nevertheless, protocol designers decided to introduce their own custom

format.

This situation (not only with JSON-RPC but with essentially every high-

level protocol built on top of  HTTP) has developed due to various reasons.

Some of  them are historical (such as the inability to use many HTTP

protocol features in early implementations of  the XMLHttpRequest

functionality in web browsers). However, new RPC protocols that rely on

the bare minimum of  HTTP capabilities continue to emerge today.

We can enumerate at least three groups of  reasons (apart from the

ideological ones, which we described in the previous chapter) leading to

this situation:

12



1. Metadata Readability

Let us emphasize a very important distinction between application-level

protocols (such as JSON-RPC in our case) and pure HTTP. In the example

above, a 400 BadRequest error is a transparent status for every

intermediary network agent but a JSON-RPC custom error is not. Firstly,

only a JSON-RPC-enabled client can read it. Secondly, and more

importantly, in JSON-RPC, the request status is not metadata. In pure HTTP,

the details of  the operation, such as the method, requested URL, execution

status, and request  / response headers are readable without the necessity to

parse the entire body. In most higher-level protocols, including JSON-RPC,

this is not the case: even a protocol-enabled client must read a body to

retrieve that information.

How does an API developer bene�t from the capability of  reading request

and response metadata? The modern client-server communication stack is

multi-layered. We can enumerate a number of  intermediary agents that

process network requests and responses:

Frameworks that developers use to write code

Programming language APIs that frameworks are built on, and

operating system APIs that compilers  / interpreters of  these

languages rely on

Intermediary proxy servers between a client and a server

Various abstractions used in server programming, including server

frameworks, programming languages, and operating systems

Web server so�ware that is typically placed in front of  backend

handlers

Additional modern microservice-oriented tools such as API gateways

and proxies.



The main advantage that following the letter of  the HTTP standard o�ers

is the possibility of  relying on intermediary agents, from client

frameworks to API gateways, to read the request metadata and perform

actions based on it. This includes regulating timeouts and retry policies,

logging, proxying, and sharding requests, among other things, without the

necessity to write additional code to achieve these functionalities. If  we try

to formulate the main principle of  designing HTTP APIs, it will be: you

would rather design an API in a way that intermediary agents can

read and interpret request and response metadata.

The main disadvantage of  HTTP APIs is that you have to rely on

intermediary agents, from client frameworks to API gateways, to read the

request metadata and perform actions based on it without your consent. This

includes regulating timeouts and retry policies, logging, proxying, and

sharding requests, among other things. Since HTTP-related speci�cations

are complex and the concepts of  REST can be challenging to comprehend,

and so�ware engineers do not always write perfect code, these

intermediary agents (including partners' developers!) will sometimes

interpret HTTP metadata incorrectly, especially when dealing with exotic

and hard-to-implement standards. Usually, one of  the stated reasons for

developing new RPC frameworks is the desire to make working with the

protocol simple and consistent, thereby reducing the likelihood of  errors

when writing integration code.

2. Quality of Solutions

The ability to read and interpret the metadata of  requests and responses

leads to the fragmentation of  available so�ware for working with HTTP

APIs. There are plenty of  tools on the market, being developed by many

di�erent companies and collaborations, and many of  them are free to use:

Proxies and gateways (nginx, Envoy, etc.)



Di�erent IDLs (�rst of  all, OpenAPI) and related tools for working

with speci�cations (Redoc, Swagger UI, etc.) and auto-generating

code

Programmer-oriented so�ware that allows for convenient

development and debugging of  API clients (Postman, Insomnia), etc.

Of  course, most of  these instruments will work with APIs that utilize

other paradigms. However, the ability to read HTTP metadata and

interpret it uniformly makes it possible to easily design complex pipelines

such as exporting nginx access logs to Prometheus and generating

response status code monitoring dashboards in Grafana that work out of

the box.

The downside of  this versatility is the quality of  these solutions and the

amount of  time one needs to integrate them, especially if  one's

technological stack is not common. On the other hand, the development of

alternative technologies is usually driven by a single large IT company

(such as Facebook, Google, or the Apache So�ware Foundation). Such a

framework might be less functional, but it will certainly be more

homogeneous and qualitative in terms of  convenience for developers,

supporting users, and the number of  known issues.

This observation applies not only to so�ware but also to its creators.

Developers' knowledge of  HTTP APIs is fragmented as well. Almost every

programmer is capable of  working with HTTP APIs to some extent, but a

signi�cant number of  them lack a thorough understanding of  the

standards and do not consult them while writing code. As a result,

implementing business logic that e�ectively and consistently works with

HTTP APIs can be more challenging than integrating alternative

technologies. This statement holds true for both partner integrators and

API providers themselves.



3. The Question of Performance

When discussing the advantages of  alternative technologies such as

GraphQL, gRPC, Apache Thri�, etc. , the argument of  lower performance

of  JSON-over-HTTP APIs is o�en presented. Speci�cally, the following

issues with the technology are commonly mentioned:

�. The verbosity of  the JSON format:

Mandatory �eld names in every object, even for an array of

similar entities

The large proportion of  technical symbols (quotes, braces,

commas, etc.) and the necessity to escape them in string values

�. The common approach of  returning a full resource representation on

resource retrieval requests, even if  the client only needs a subset of

the �elds

�. The lower performance of  data serializing and deserializing

operations

�. The need to introduce additional encoding, such as Base64, to handle

binary data

�. Performance quirks of  the HTTP protocol itself, particularly the

inability to serve multiple simultaneous requests through one

connection.

Let's be honest: HTTP APIs do su�er from the listed problems. However,

we can con�dently say that the impact of  these factors is o�en

overestimated. The reason API vendors care little about HTTP API

performance is that the actual overhead is not as signi�cant as it is

perceived. Speci�cally:

�. Regarding the verbosity of  the format, it is important to note that

these issues are mainly relevant when compression algorithms are

not utilized. Comparisons have shown  that enabling compression

algorithms such as gzip largely reduces the di�erence in sizes between

JSON documents and alternative binary formats (and there are

13



compression algorithms speci�cally designed for processing text

data, such as brotli ).

�. If  necessary, API designers can customize the list of  returned �elds in

HTTP APIs. It aligns well with both the letter and the spirit of  the

standard. However, as we already explained to the reader in the

“Partial Updates” chapter, trying to minimize tra�c by returning

only subsets of  data is rarely justi�ed in well-designed APIs.

�. If  standard JSON deserializers are used, the overhead compared to

binary standards might indeed be signi�cant. However, if  this

overhead is a real problem, it makes sense to consider alternative

JSON serializers such as simdjson . Due to their low-level and highly

optimized code, simdjson demonstrates impressive throughput which

would be suitable for all APIs except some corner cases.

The combination of  gzip/brotli + simdjson largely renders the

use of  optimized JSON derivatives, such as BSON,  unnecessary

in client-server communication.

�. Generally speaking, the HTTP API paradigm implies that binary data

(such as images or video �les) is served through separate endpoints.

Returning binary data in JSON is only necessary when a separate

request for the data is a problem from the performance perspective.

These situations are virtually non-existent in server-to-server

interactions and/or if  HTTP/2 or a higher protocol version is used.

�. The HTTP/1.1 protocol version is indeed a suboptimal solution if

request multiplexing is needed. However, alternate approaches to

tackling the problem usually rely on… HTTP/2. Of  course, an HTTP

API can also be served over HTTP/2.

Let us reiterate once more: JSON-over-HTTP APIs are indeed less

performative than binary protocols. Nevertheless, we take the liberty to

say that for a well-designed API in common subject areas switching to

alternative protocols will generate quite a modest pro�t.

14

15

16



Advantages and Disadvantages of the JSON Format

It's not hard to notice that most of  the claims regarding HTTP API

performance are actually not about the HTTP protocol but the JSON

format. There is no problem in developing an HTTP API that will utilize

any binary format (including, for instance, Protocol Bu�ers). Then the

di�erence between a Protobuf-over-HTTP API and a gRPC API would be

just about using granular URLs, status codes, request  / response headers,

and the ensuing (in)ability to use integrated so�ware tools out of  the box.

However, on many occasions (including this book) developers prefer the

textual JSON over binary Protobuf  (Flatbu�ers, Thri�, Avro, etc.) for a very

simple reason: JSON is easy to read. First, it's a text format and doesn't

require additional decoding. Second, it's self-descriptive, meaning that

property names are included. Unlike Protobuf-encoded messages which

are basically impossible to read without a .proto �le, one can make a very

good guess as to what a JSON document is about at a glance. Provided that

request metadata in HTTP APIs is readable as well, we ultimately get a

communication format that is easy to parse and understand with just our

eyes.

Apart from being human-readable, JSON features another important

advantage: it is strictly formal meaning it does not contain any constructs

that can be interpreted di�erently in di�erent architectures (with a

possible exception of  the sizes of  numbers and strings), and the

deserialization result aligns very well with native data structures (i.e. ,

indexed and associative arrays) of  almost every programming language.

From this point of  view, we actually had no other choice when selecting a

format for code samples in this book.

NB. To get a more thorough understanding of  data formats and their

features the reader might refer to the Kleppmann's overview.17



Choosing a Client-Server Development Technology

As we see, HTTP APIs and alternative RPC protocols occupy di�erent

market niches:

For public APIs, exposing JSON-over-HTTP endpoints is the default

option because the technology:

Is familiar to a broad circle of  so�ware engineers

Allows for developing applications on top of  virtually any

platform.

For specialized APIs, choosing specialized frameworks (such as

selecting Apache Avro to work with Apache Hadoop) is an obvious

solution.

The practice of  providing public APIs in, let's say, gRPC format has been

slowly gaining popularity but is still close to negligible. Therefore, the

selection problem only arises when we discuss private general-purpose

APIs. As of  today, the choice appears to be as follows:

HTTP (“REST”) API

gRPC

GraphQL

Other smaller technologies which we will skip.

gRPC is a classical second-generation technology featuring all the

advantages we discussed earlier:

It relies on the state-of-the-art capabilities of  the HTTP/2 protocol

and the Protobuf  data exchange format (the latter is non-mandatory,

although the majority of  gRPC API implementations use it).

It is developed by Google and comes with a broad selection of  tools.

It features the contract-�rst approach, i.e. , developing an API begins

with writing a speci�cation.

The use of  code generation allows for conveniently working with the

protocol in imperative programming languages.



The disadvantages of  gRPC are:

The complexity of  decoding messages and debugging

communication.

Poor support of  Web browsers.

Its less widespread adoption, which results in a higher entry

threshold for developers.

Potential vendor lock-in.

Otherwise, gRPC is undoubtedly one of  the most advanced and e�cient

protocols.

GraphQL features a curious approach that combines the concept of

“resources” in HTML (i.e. , it focuses on detailed descriptions of  data

formats and domain relations) while providing a rich query vocabulary to

retrieve the needed subset of  �elds. Its main application is in data-heavy

subject areas with complex entity hierarchies. (As evident from the name,

GraphQL is more of  a mechanism for distributed querying of  abstract data

storages than an API development paradigm.) Exposing external GraphQL

APIs is rather an exotic practice as of  today, mainly because managing a

GraphQL service becomes increasingly challenging with growing data size

and query numbers.

NB: in theory, an API could provide a dual interface — let's say, both JSON-

over-HTTP and gRPC. Since the formal description of  data formats and

applicable operations is fundamental to all modern frameworks, these

formats could be converted from one to another, thus making such a

multi-API possible. However, in practice, we are not aware of  any

examples of  such an API. We would venture to say that the potential

bene�ts of  increased convenience for developers do not outweigh the

overhead expenses of  maintaining dual interfaces.

18



References

JSON-RPC

www.jsonrpc.org

GraphQL

graphql.org

JSON

www.ecma-international.org/publications-and-standards/standards/ecma-404

gRPC

grpc.io

Apache Thri�

thri�.apache.org

Apache Avro

avro.apache.org/docs

Protocol Bu�ers

protobuf.dev

FlatBu�ers

�atbu�ers.dev

SOAP

www.w3.org/TR/soap12

XML-RPC

xmlrpc.com

Extensible Markup Language (XML)

www.w3.org/TR/xml

JSON-RPC 2.0 Speci�cation. Response object

www.jsonrpc.org/speci�cation#response_object

Comparing sizes of  protobuf  vs json

nilsmagnus.github.io/post/proto-json-sizes

1

2

3

4

5

6

7

8

9

10

11

12

13

https://www.jsonrpc.org/
https://graphql.org/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://grpc.io/
https://thrift.apache.org/
https://avro.apache.org/docs/
https://protobuf.dev/
https://flatbuffers.dev/
https://www.w3.org/TR/soap12/
http://xmlrpc.com/
https://www.w3.org/TR/xml/
https://www.jsonrpc.org/specification#response_object
https://nilsmagnus.github.io/post/proto-json-sizes/


Brotli Compressed Data Format

datatracker.ietf.org/doc/html/rfc7932

simdjson : Parsing gigabytes of  JSON per second

github.com/simdjson/simdjson

BSON

bsonspec.org

Kleppmann, M. (2017), Chapter 4. Encoding and Evolution

Mehta, S. , Barodiya, K. Lessons learned from running GraphQL at scale

blog.dream11engineering.com/lessons-learned-from-running-graphql-at-scale-2ad60b3cefeb

14

15

16

17

18

https://datatracker.ietf.org/doc/html/rfc7932
https://github.com/simdjson/simdjson
https://bsonspec.org/
https://blog.dream11engineering.com/lessons-learned-from-running-graphql-at-scale-2ad60b3cefeb


Chapter 35. The REST Myth

Before we proceed to discuss HTTP API design patterns, we feel obliged to

clarify one more important terminological issue. O�en, an API matching

the description we gave in the “On the HTTP API Concept” chapter is called

a “REST API” or a “RESTful API.” In this Section, we don't use any of  these

terms as it makes no practical sense.

What is “REST”? As we mentioned earlier, in 2000, Roy Fielding, one of

the authors of  the HTTP and URI speci�cations, published his doctoral

dissertation titled “Architectural Styles and the Design of  Network-based

So�ware Architectures,” the ��h chapter of  which was named

“Representational State Transfer (REST).”

As anyone can attest by reading this chapter, it features a very much

abstract overview of  a distributed client-server architecture that is not

bound to either HTTP or URL. Furthermore, it does not discuss any API

design recommendations. In this chapter, Fielding methodically enumerates

restrictions that any so�ware engineer encounters when developing

distributed client-server so�ware. Here they are:

The client and the server do not know how each of  them is

implemented

Sessions are stored on the client (the “stateless” constraint)

Data must be marked as cacheable or non-cacheable

Interaction interfaces between system components must be uniform

Network-based systems are layered, meaning every server may just

be a proxy to another server

The functionality of  the client might be enhanced by the server

providing code on demand.

1



That's it. With this, the REST de�nition is over. Fielding further

concretizes some implementation aspects of  systems under the stated

restrictions. However, all these clari�cations are no less abstract. Literally,

the key abstraction for the REST architectural style is “resource”; any data

that can have a name may be a resource.

The key conclusion that we might draw from the Fielding-2000 de�nition

of  REST is, generally speaking, that any networking so�ware in the world

complies with the REST constraints. The exceptions are very rare.

Consider the following:

It is very hard to imagine any system that does not feature any level of

uniformity of  inter-component communication as it would be

impossible to develop such a system. Ultimately, as we mentioned in

the previous chapter, almost all network interactions are based on

the IP protocol, which is a uniform interface.

If  there is a uniform communication interface, it can be mimicked if

needed, so the requirement of  client and server implementation

independence can always be met.

If  we can create an alternative server, it means we can always have a

layered architecture by placing an additional proxy between the

client and the server.

As clients are computational machines, they always store some state

and cache some data.

Finally, the code-on-demand requirement is a sly one as in a von

Neumann architecture , we can always say that the data the client

receives actually comprises instructions in some formal language.

Yes, of  course, the reasoning above is a sophism, a reduction to absurdity.

Ironically, we might take the opposite path to absurdity by proclaiming

that REST constraints are never met. For instance, the code-on-demand

requirement obviously contradicts the requirement of  having an

independently-implemented client and server as the client must be able to

interpret the instructions the server sends written in a speci�c language.

2



As for the “S” rule (i.e. , the “stateless” constraint), it is very hard to �nd a

system that does not store any client context as it's close to impossible to

make anything useful for the client in this case. (And, by the way, Fielding

explicitly requires that: “communication … cannot take advantage of  any

stored context on the server.”)

Finally, in 2008, Fielding himself  increased the entropy in the

understanding of  the concept by issuing a clari�cation  explaining what

he actually meant. In this article, among other things, he stated that:

REST API development must focus on describing media types

representing resources

The client must be agnostic of  these media types

There must not be �xed resource names and operations with

resources. Clients must extract this information from the server's

responses.

The concept of  “Fielding-2008 REST” implies that clients, a�er somehow

obtaining an entry point to the API, must be able to communicate with the

server having no prior knowledge of  the API and de�nitely must not

contain any speci�c code to work with the API. This requirement is much

stricter than the ones described in the dissertation of  2000. Particularly,

REST-2008 implies that there are no �xed URL templates; actual URLs to

perform operations with the resource are included in the resource

representation (this concept is known as HATEOAS ). The dissertation of

2000 does not contain any de�nitions of  “hypermedia” that contradict the

idea of  constructing such links based on the prior knowledge of  the API

(such as a speci�cation).

NB: Leaving out the fact that Fielding rather loosely interpreted his own

dissertation, let us point out that no system in the world complies with the

Fielding-2008 de�nition of  REST.

3

4



We have no idea why, out of  all the overviews of  abstract network-based

so�ware architecture, Fielding's concept gained such popularity. It is

obvious that Fielding's theory, re�ected in the minds of  millions of

so�ware developers, became a genuine engineering subculture. By

reducing the REST idea to the HTTP protocol and the URL standard, the

chimera of  a “RESTful API” was born, of  which nobody knows the

de�nition.

Do we want to say that REST is a meaningless concept? De�nitely not. We

only aimed to explain that it allows for quite a broad range of

interpretations, which is simultaneously its main power and its main

weakness.

On one hand, thanks to the multitude of  interpretations, the API

developers have built a perhaps vague but useful view of  “proper” HTTP

API architecture. On the other hand, the lack of  concrete de�nitions has

made REST API one of  the most “holywar”-inspiring topics, and these

holywars are usually quite meaningless as the popular REST concept has

nothing to do with the REST described in Fielding's dissertation (and even

more so, with the REST described in Fielding's manifesto of  2008).

The terms “REST architectural style” and its derivative “REST API” will not

be used in the following chapters since it makes no practical sense as we

explained above. We referred to the constraints described by Fielding

many times in the previous chapters because, let us emphasize it once

more, it is impossible to develop distributed client-server APIs without

taking them into account. However, HTTP APIs (meaning JSON-over-

HTTP endpoints utilizing the semantics described in the HTTP and URL

standards) as we will describe them in the following chapter align well

with the “average” understanding of  “REST  / RESTful API” as per

numerous tutorials on the Web.

5



References

Fielding, R. T. (2001), CHAPTE� 5. Representational State Transfer

(REST)"

www.ics.uci.edu/~�elding/pubs/dissertation/rest_arch_style.htm

Von Neumann Architecture

en.wikipedia.org/wiki/Von_Neumann_architecture

Fielding, R. T. REST APIs must be hypertext-driven

roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

HATEOAS

en.wikipedia.org/wiki/HATEOAS

Gupta, L. What is REST

restfulapi.net

1

2

3

4

5

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://en.wikipedia.org/wiki/HATEOAS
https://restfulapi.net/


Chapter 36. Components of an HTTP Request and
Their Semantics

The important exercise we must conduct is to describe the format of  an

HTTP request and response and explain the basic concepts. Many of  these

may seem obvious to the reader. However, the situation is that even the

basic knowledge we require to move further is scattered across vast and

fragmented documentation, causing even experienced developers to

struggle with some nuances. Below, we will try to compile a structured

overview that is su�cient to design HTTP APIs. For a deeper

understanding a curious reader might refer to the comprehensive book by

David Gourley and Brian Totty.

To describe the semantics and formats, we will refer to the brand-new RFC

9110 , which replaces no fewer than nine previous speci�cations dealing

with di�erent aspects of  the technology. However, a signi�cant volume of

additional functionality is still covered by separate standards. In

particular, the HTTP caching principles are described in the standalone

RFC 9111 , while the popular PATCH method is omitted in the main RFC

and is regulated by RFC 5789 .

An HTTP request consists of  (1) applying a speci�c verb to a URL, stating

(2) the protocol version, (3) additional meta-information in headers, and

(4) optionally, some content (request body):

POST /v1/orders HTTP/1.1
Host: our-api-host.tld
Content-Type: application/json

{
"coffee_machine_id": 123,
"currency_code": "MNT",
"price": "10.23",
"recipe": "lungo",
"offer_id": 321,
"volume": "800ml"

}

1

2

3

4



An HTTP response to such a request includes (1) the protocol version, (2) a

status code with a corresponding message, (3) response headers, and (4)

optionally, response content (body):

HTTP/1.1 201 Created
Location: /v1/orders/123
Content-Type: application/json

{
"id": 123

}

NB: In HTTP/2 (and future HTTP/3), separate binary frames are used for

headers and data instead of  the holistic text format.  However, this doesn't

a�ect the architectural concepts we will describe below. To avoid

ambiguity, we will provide examples in the HTTP/1.1 format.

1. A URL

A Uniform Resource Locator (URL) is an addressing unit in an HTTP API.

Some evangelists of  the technology even use the term “URL space” as a

synonym for “The World Wide Web.” It is expected that a proper HTTP API

should employ an addressing system that is as granular as the subject area

itself; in other words, each entity that the API can manipulate should have

its own URL.

The URL format is governed by a separate standard  developed by an

independent body known as the Web Hypertext Application Technology

Working Group (WHATWG). The concepts of  URLs and Uniform Resource

Names (URNs) together constitute a more general entity called Uniform

Resource Identi�ers (URIs). (The di�erence between the two is that a URL

allows for locating a resource within the framework of  some protocol

whereas a URN is an “internal” entity name that does not provide

information on how to �nd the resource.)

5

6



URLs can be decomposed into sub-components, each of  which is optional.

While the standard enumerates a number of  legacy practices, such as

passing logins and passwords in URLs or using non-UTF encodings, we

will skip discussing those. Instead, we will focus on the following

components that are relevant to the topic of  HTTP API design:

A scheme: a protocol to access the resource (in our case it is always

https:)

A host: a top-level address unit in the form of  either a domain name

or an IP address. A host might contain subdomains.

A port.

A path: a URL part between the host (including port) and the ? or #

symbols or the end of  the line.

The path itself  is usually decomposed into parts using the /

symbol as a delimiter. However, the standard does not de�ne

any semantics for it.

Two paths, one ending with / and one without it (for example,

/root/leaf and /root/leaf/), are considered di�erent paths

according to the standard. Conversely, two URLs that di�er only

in trailing slashes in their paths are considered di�erent as well.

However, we are unaware of  a single argument to di�erentiate

such URLs in practice.

Paths may contain . and .. parts, which are supposed to be

interpreted similarly to analogous symbols in �le paths

(meaning that /root/leaf, /root/./leaf, and

/root/branch/../leaf are equivalent).

A query: a URL part between the ? symbol and either # or the end of

the line.

A query is usually decomposed into key=value pairs split by the &

character. Again, the standard does not require this or de�ne the

semantics.

Nor does the standard imply any normalization of  the ordering.

URLs that di�er only in the order of  keys in the queries are

considered di�erent.



A fragment (also known as an anchor): a part of  a URL that follows

the # sign.

Fragments are usually treated as addresses within the requested

document and because of  that are o�en omitted by user agents

while executing the request.

Two URLs that only di�er in fragment parts may be considered

equal or not, depending on the context.

In HTTP requests, the scheme, host, and port are usually (but not always)

omitted and presumed to be equal to the connection parameters. (Fielding

actually names this arrangement one of  the biggest �aws in the protocol

design.)

Traditionally, it is implied that paths describe a strict hierarchy of

resource subordination (for example, the URL of  a speci�c co�ee machine

in our API could look like places/{id}/coffee-machines/{id}, since a

co�ee machine strictly belongs to one co�ee shop), while query

parameters express non-strict hierarchies and operation parameters (for

example, the URL for searching listings could look like search?location=

<map point>).

Additionally, the standard contains rules for serializing, normalizing, and

comparing URLs, knowing which can be useful for an HTTP API developer.

2. Headers

Headers contain metadata associated with a request or a response. They

might describe properties of  entities being passed (e.g. , Content-Length),

provide additional information regarding a client or a server (e.g. , User-

Agent, Date, etc.) or simply contain additional �elds that are not directly

related to the request/response semantics (such as Authorization).



The important feature of  headers is the possibility to read them before the

message body is fully transmitted. This allows for altering request or

response handling depending on the headers, and it is perfectly �ne to

manipulate headers while proxying requests. Many network agents

actually do this, i.e. , add, remove, or modify headers while proxying

requests. In particular, modern web browsers automatically add a number

of  technical headers, such as User-Agent, Origin, Accept-Language,

Connection, Referer, Sec-Fetch-*, etc. , and modern server so�ware

automatically adds or modi�es such headers as X-Powered-By, Date,

Content-Length, Content-Encoding, X-Forwarded-For, etc.

This freedom in manipulating headers can result in unexpected problems

if  an API uses them to transmit data as the �eld names developed by an

API vendor can accidentally overlap with existing conventional headers,

or worse, such a collision might occur in the future at any moment. To

avoid this issue, the practice of  adding the pre�x X- to custom header

names was frequently used in the past. More than ten years ago this

practice was o�cially discouraged (see the detailed overview in RFC

6648 ). Nevertheless, the pre�x has not been fully abolished, and many

semi-standard headers still contain it (notably, X-Forwarded-For).

Therefore, using the X- pre�x reduces the probability of  collision but does

not eliminate it. The same RFC reasonably suggests using the API vendor

name as a pre�x instead of  X-. (We would rather recommend using both,

i.e. , sticking to the X-ApiName-FieldName format. Here X- is included for

readability [to distinguish standard �elds from custom ones], and the

company or API name part helps avoid collisions with other non-standard

header names).

Additionally, headers are used as control �ow instructions for so-called

“content negotiation,” which allows the client and server to agree on a

response format (through Accept* headers) and to perform conditional

requests that aim to reduce tra�c by skipping response bodies, either fully

or partially (through If-* headers, such as If-Range, If-Modified-Since,

etc.)

7



3. HTTP Verbs

One important component of  an HTTP request is a method (verb) that

describes the operation being applied to a resource. RFC 9110 standardizes

eight verbs — namely, GET, POST, PUT, DELETE, HEAD, CONNECT, OPTIONS, and

TRACE — of  which we as API developers are interested in the former four.

The CONNECT, OPTIONS, and TRACE methods are technical and rarely used in

HTTP APIs (except for OPTIONS, which needs to be implemented to ensure

access to the API from a web browser). Theoretically, the HEAD verb, which

allows for requesting resource metadata only, might be quite useful in API

design. However, for reasons unknown to us, it did not take root in this

capacity.

Apart from RFC 9110, many other speci�cations propose additional HTTP

verbs, such as COPY, LOCK, SEARCH, etc. — the full list can be found in the

registry . However, only one of  them gained widespread popularity — the

PATCH method. The reasons for this state of  a�airs are quite trivial: the �ve

methods (GET, POST, PUT, DELETE, and PATCH) are enough for almost any

API.

HTTP verbs de�ne two important characteristics of  an HTTP call:

Semantics: what the operation means

Side e�ects:

Whether the request modi�es any resource state or if  it is safe

(and therefore, could it be cached)

Whether the request is idempotent or not.

Verb Semantics
Is safe (non-

modifying)

Is

idempotent

Can have

a body

GET
Returns a representation of

a resource
Yes Yes

Should

not

PUT Replaces (fully overwrites)

a resource with a provided

No Yes Yes

8



Verb Semantics
Is safe (non-

modifying)

Is

idempotent

Can have

a body

entity

DELETE Deletes a resource No Yes
Should

not

POST

Processes a provided entity

according to its internal

semantics

No No Yes

PATCH

Modi�es (partially

overwrites) a resource with

a provided entity

No No Yes

NB: Contrary to a popular misconception, the POST method is not limited

to creating new resources.

The most important property of  modifying idempotent verbs is that the

URL serves as an idempotency key for the request. The PUT /url

operation fully overwrites a resource, so repeating the request won't

change the resource. Conversely, retrying a DELETE /url request must

leave the system in the same state where the /url resource is deleted.

Regarding the GET /url method, it must semantically return the

representation of  the same target resource /url. If  it exists, its

implementation must be consistent with prior PUT / DELETE operations. If

the resource was overwritten via PUT /url, a subsequent GET /url call

must return a representation that matches the entity enclosed in the PUT

/url request. In the case of  JSON-over-HTTP APIs, this simply means that

GET /url returns the same data as what was passed in the preceding PUT

/url, possibly normalized and equipped with default values. On the other

hand, a DELETE /url call must remove the resource, resulting in

subsequent GET /url requests returning a 404 or 410 error.



The idempotency and symmetry of  the GET / PUT / DELETE methods imply

that neither GET nor DELETE can have a body as no reasonable meaning

could be associated with it. However, most web server so�ware allows

these methods to have bodies and transmits them further to the endpoint

handler, likely because many so�ware engineers are unaware of  the

semantics of  the verbs (although we strongly discourage relying on this

behavior).

For obvious reasons, responses to modifying endpoints are not cached

(though there are some conditions to use a response to a POST request as

cached data for subsequent GET requests). This ensures that repeating

POST / PUT / DELETE / PATCH requests will hit the server as no intermediary

agent can respond with a cached result. In the case of  a GET request, it is

generally not true. Only the presence of  no-store or no-cache directives

in the response guarantees that the subsequent GET request will reach the

server.

One of  the most widespread HTTP API design antipatterns is violating the

semantics of  HTTP verbs:

Placing modifying operations in a GET handler. This can lead to the

following problems:

Interim agents might respond to such a request using a cached

value if  a required caching directive is missing, or vice versa,

automatically repeat a request upon receiving a network

timeout.

Some agents consider themselves eligible to traverse hyper-

references (i.e. , making HTTP GET requests) without the explicit

user's consent. For example, social networks and messengers

perform such calls to generate a preview for a link when a user

tries to share it.



Placing non-idempotent operations in PUT  / DELETE handlers.

Although interim agents do not typically repeat modifying requests

regardless of  their alleged idempotency, a client or server framework

can easily do so. This mistake is o�en coupled with requiring passing

a body alongside a DELETE request to discern the speci�c object that

needs to be deleted, which per se is a problem as any interim agent

might discard such a body.

Ignoring the GET  / PUT  / DELETE symmetry requirement. This can

manifest in di�erent ways, such as:

Making a GET /url operation return data even a�er a successful

DELETE /url call

Making a PUT /url operation take the identi�ers of  the entities

to modify from the request body instead of  the URL, resulting in

the GET /url operation's inability to return a representation of

the entity passed to the PUT /url handler.

4. Status Codes

A status code is a machine-readable three-digit number that describes the

outcome of  an HTTP request. There are �ve groups of  status codes:

1xx codes are informational. Among these, the 100 Continue code is

probably the only one that is commonly used.

2xx codes indicate that the operation was successful.

3xx codes are redirection codes, implying that additional actions

must be taken to consider the operation fully successful.

4xx codes represent client errors

5xx codes represent server errors.

NB: The separation of  codes into groups by the �rst digit is of  practical

importance. If  the client is unaware of  the meaning of  an xyz code

returned by the server, it must conduct actions as if  an x00 code was

received.



The idea behind status codes is obviously to make errors machine-

readable so that all interim agents can detect what has happened with a

request. The HTTP status code nomenclature e�ectively describes nearly

every problem applicable to an HTTP request, such as invalid Accept-*

header values, missing Content-Length, unsupported HTTP verbs,

excessively long URIs, etc.

Unfortunately, the HTTP status code nomenclature is not well-suited for

describing errors in business logic. To return machine-readable errors

related to the semantics of  the operation, it is necessary either to use

status codes unconventionally (i.e. , in violation of  the standard) or to

enrich responses with additional �elds. Designing custom errors in HTTP

APIs will be discussed in the corresponding chapter.

NB: Note the problem with the speci�cation design. By default, all 4xx

codes are non-cacheable, but there are several exceptions, namely the 404,

405, 410, and 414 codes. While we believe this was done with good

intentions, the number of  developers aware of  this nuance is likely to be

similar to the number of  HTTP speci�cation editors.

One Important Remark Regarding Caching

Caching is a crucial aspect of  modern microservice architecture design. It

can be tempting to control caching at the protocol level, and the HTTP

standard provides various tools to facilitate this. However, the author of

this book must warn you: if  you decide to utilize these tools, it is essential

to thoroughly understand the standard. Flaws in the implementation of

certain techniques can result in disruptive behavior. The author personally

experienced a major outage caused by the aforementioned lack of

knowledge regarding the default cacheability of  404 responses. In this

incident, some settings for an important geographical area were

mistakenly deleted. Although the problem was quickly localized and the

settings were restored, the service remained inoperable in the area for

several hours because clients had cached the 404 response and did not

request it anew until the cache had expired.



One Important Remark Regarding Consistency

One parameter might be placed in di�erent components of  an HTTP

request. For example, an identi�er of  a partner making a request might be

passed as part of:

A domain name, e.g. , {partner_id}.domain.tld

A path, e.g. , /v1/{partner_id}/orders

A query parameter, e.g. /v1/orders?partner_id=<partner_id>

A header value, e.g.

GET /v1/orders HTTP/1.1
X-ApiName-Partner-Id: <partner_id>

A �eld within the request body, e.g.

POST /v1/orders/retrieve HTTP/1.1

{
"partner_id": <partner_id>

}

There are also more exotic options, such as placing a parameter in the

scheme of  a request or in the Content-Type header.

However, when we move a parameter around di�erent components, we

face three annoying issues:

Some tokens are case-sensitive (path, query parameters, JSON �eld

names), while others are not (domain and header names)

With header values, there is even more chaos: some of  them are

required to be case-insensitive (e.g. , Content-Type), while others

are prescribed to be case-sensitive (e.g. , ETag)



Allowed symbols and escaping rules di�er as well:

Notably, there is no widespread practice for escaping the /, ?,

and # symbols in a path

Unicode symbols in domain names are allowed (though not

universally supported) through a peculiar encoding technique

called “Punycode ”

Traditionally, di�erent casings are used in di�erent parts of  an HTTP

request:

kebab-casein domains, headers, and paths

snake_case in query parameters

snake_case or camelCase in request bodies.

Furthermore, using both snake_case and camelCase in domain

names is impossible as the underscore sign is not allowed and capital

letters will be lowercased during URL normalization.

Theoretically, it is possible to use kebab-case everywhere. However, most

programming languages do not allow variable names and object �elds in

kebab-case, so working with such an API would be quite inconvenient.

To wrap this up, the situation with casing is so spoiled and convoluted that

there is no consistent solution to employ. In this book, we follow this rule:

tokens are cased according to the common practice for the corresponding

request component. If  a token's position changes, the casing is changed as

well. (However, we're far from recommending following this approach

unconditionally. Our recommendation is rather to try to avoid increasing

the entropy by choosing a solution that minimizes the probability of

misunderstanding.)

9



NB: Strictly speaking, JSON stands for “JavaScript Object Notation,” and in

JavaScript, the default casing is camelCase. However, we dare to say that

JSON ceased to be a format bound to JavaScript long ago and is now a

universal format for organizing communication between agents written in

di�erent programming languages. Employing camel_case allows for

easily moving a parameter from a query to a body, which is the most

frequent case. Although the inverse solution (i.e. , using camelCase in

query parameter names) is also possible.

References

Gourley D. , Totty, B. (2002), HTTP: The De�nitive Guide

RFC 9110. HTTP Semantics

www.rfc-editor.org/rfc/rfc9110.html

RFC 9111. HTTP Caching

www.rfc-editor.org/rfc/rfc9111.html

PATCH Method for HTTP

www.rfc-editor.org/rfc/rfc5789.html

Grigorik, I. (2013), Chapter 12. HTTP/2

hpbn.co/http2

URL Living Standard

url.spec.whatwg.org

Deprecating the "X-" Pre�x and Similar Constructs in Application

Protocols

www.rfc-editor.org/rfc/rfc6648

Hypertext Transfer Protocol (HTTP) Method Registry

www.iana.org/assignments/http-methods/http-methods.xhtml

Punycode: A Bootstring encoding of  Unicode for Internationalized

Domain Names in Applications (IDNA)

www.rfc-editor.org/rfc/rfc3492.txt

1

2

3

4

5

6

7

8

9

https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9111.html
https://www.rfc-editor.org/rfc/rfc5789.html
https://hpbn.co/http2/
https://url.spec.whatwg.org/
https://www.rfc-editor.org/rfc/rfc6648
https://www.iana.org/assignments/http-methods/http-methods.xhtml
https://www.rfc-editor.org/rfc/rfc3492.txt


Chapter 37. Organizing HTTP APIs Based on the REST
Principles

Now let's discuss the speci�cs: what does it mean exactly to “follow the

protocol's semantics” and “develop applications in accordance with the

REST architectural style”? Remember, we are talking about the following

principles:

Operations must be stateless

Data must be marked as cacheable or non-cacheable

There must be a uniform interface of  communication between

components

Network systems are layered.

We need to apply these principles to an HTTP-based interface, adhering to

the letter and spirit of  the standard:

The URL of  an operation must point to the resource the operation is

applied to, serving as a cache key for GET operations and an

idempotency key for PUT and DELETE operations.

HTTP verbs must be used according to their semantics.

Properties of  the operation, such as safety, cacheability, idempotency,

as well as the symmetry of  GET  / PUT  / DELETE methods, request and

response headers, response status codes, etc. , must align with the

speci�cation.

NB: We're deliberately skipping many nuances of  the standard:

A caching key might be composite (i.e. , include request headers) if  the

response contains the Vary header.

An idempotency key might also be composite if  the request contains

the Range header.



If  there are no explicit cache control headers, the caching policy will

not be de�ned by the HTTP verb alone. It will also depend on the

response status code, other request and response headers, and

platform policies.

To keep the chapter size reasonable, we will not discuss these details,

but we highly recommend reading the standard thoroughly.

Let's talk about organizing HTTP APIs based on a speci�c example.

Imagine an application start procedure: as a rule of  thumb, the application

requests the current user pro�le and important information regarding

them (in our case, ongoing orders), using the authorization token saved in

the device's memory. We can propose a straightforward endpoint for this

purpose:

GET /v1/state HTTP/1.1
Authorization: Bearer <token>
→
HTTP/1.1 200 OK

{ "profile", "orders" }

Upon receiving such a request, the server will check the validity of  the

token, fetch the identi�er of  the user user_id, query the database, and

return the user's pro�le and the list of  their orders.

This simple monolith API service violates several REST architectural

principles:

There is no obvious solution for caching responses on the client side

(the order state is being frequently updated and there is no sense in

saving it)

The operation is stateful as the server must keep tokens in memory to

retrieve the user identi�er, to which the requested data is bound.

The system comprises a single layer, and therefore, the question of  a

uniform interface is meaningless.



While scaling the backend is not a problem, this approach works.

However, with the audience and the service's functionality (and the

number of  so�ware engineers working on it) growing, we sooner or later

face the fact that this monolith architecture costs too much in overhead

charges. Imagine we decided to decompose this single backend into four

microservices:

Service A checks authentication tokens

Service B stores user accounts

Service C stores orders

Gateway service D routes incoming requests to other microservices.

This implies that a request traverses the following path:

Gateway D receives the request and sends it to both Service C and

Service D.

C and D call Service A to check the authentication token (passed as a

proxied Authorization header or as an explicit request parameter)

and return the requested data — the user's pro�le and the list of  their

orders.

Service D merges the responses and sends them back to the client.



The original microservice mesh

It is quite obvious that in this setup, we put excessive load on the

authorization service as every nested microservice now needs to query it.

Even if  we abolish checking the authenticity of  internal requests, it won't

help as services B and C can't know the identi�er of  the user. Naturally,

this leads to the idea of  propagating the once-retrieved user_id through

the microservice mesh:

Gateway D receives a request and exchanges the token for user_id

through service A

Gateway D queries service B:



GET /v1/profiles/{user_id}

and service C:

GET /v1/orders?user_id=<user id>

Step 1. Adding explicit user identi�ers

NB: We used the /v1/orders?user_id notation and not, let's say,

/v1/users/{user_id}/orders, because of  two reasons:

The orders service stores orders, not users, and it would be logical to

re�ect this fact in URLs

If  in the future, we require allowing several users to share one order,

the /v1/orders?user_id notation will better re�ect the relations

between entities.



We will discuss organizing URLs in HTTP APIs in more detail in the

next chapter.

Now both services A and B receive the request in a form that makes it

redundant to perform additional actions (identifying the user through

service A) to obtain the result. By doing so, we refactored the interface

allowing a microservice to stay within its area of responsibility, thus making it

compliant with the stateless constraint.

Let us emphasize that the di�erence between stateless and stateful

approaches is not clearly de�ned. Microservice B stores the client state

(i.e. , the user pro�le) and therefore is stateful according to Fielding's

dissertation. However, we rather intuitively agree that storing pro�les and

just checking token validity is a better approach than doing all the same

operations plus having the token cache. In fact, we rather embrace the

logical principle of  separating abstraction levels which we discussed in

detail in the corresponding chapter:

Microservices should be designed to clearly outline their

responsibility area and to avoid storing data belonging to other

abstraction levels

External entities should be just context identi�ers, and microservices

should not interpret them

If  operations with external data are unavoidable (for example, the

authority making a call must be checked), the operations must be

organized in a way that reduces them to checking the data

integrity.

In our example, we might get rid of  unnecessary calls to service A in a

di�erent manner — by using stateless tokens, for example,

employing the JWT standard . Then services B and C would be

capable of  deciphering tokens and extracting user identi�ers on their

own.

1



Let us take a step further and notice that the user pro�le rarely changes, so

there is no need to retrieve it each time as we might cache it at the gateway

level. To do so, we must form a cache key which is essentially the client

identi�er. We can do this by taking a long way:

Before requesting service B, generate a cache key and probe the cache

If  the data is in the cache, respond with the cached snapshot; if  it is

not, query service B and cache the response.

Alternatively, we can rely on HTTP caching which is most likely already

implemented in the framework we use or easily added as a plugin. In this

scenario, gateway D requests the /v1/profiles/{user_id} resource in

service B, retrieves the data alongside the cache control headers, and

caches it locally.

Now let's shi� our attention to service C. The results retrieved from it

might also be cached. However, the state of  an ongoing order changes

more frequently than the user's pro�les, and returning an invalid state

might entail objectionable consequences. However, as discussed in the

“Synchronization Strategies” chapter, we need optimistic concurrency

control (i.e. , the resource revision) to ensure the functionality works

correctly, and nothing could prevent us from using this revision as a cache

key. Let service C return a tag describing the current state of  the user's

orders:

GET /v1/orders?user_id=<user_id> HTTP/1.1
→
HTTP/1.1 200 OK
ETag: <revision>
…

Then gateway D can be implemented following this scenario:

�. Cache the response of  GET /v1/orders?user_id=<user_id> using the

URL as a cache key

�. Upon receiving a subsequent request:



Fetch the cached state, if  any

Query service C passing the following parameters:

GET /v1/orders?user_id=<user_id> HTTP/1.1
If-None-Match: <revision>

If  service C responds with a 304 Not Modified status code,

return the cached state

If  service C responds with a new version of  the data, cache it and

then return it to the client.



Step 2. Adding server-side caches

By employing this approach [using ETags to control caching], we

automatically get another pleasant bonus. We can reuse the same data in

the order creation endpoint design. In the optimistic concurrency control

paradigm, the client must pass the actual revision of  the orders resource

to change its state:



POST /v1/orders HTTP/1.1
If-Match: <revision>

Gateway D will add the user's identi�er to the request and query service C:

POST /v1/orders?user_id=<user_id> HTTP/1.1
If-Match: <revision>

If  the revision is valid and the operation is executed, service C might

return the updated list of  orders alongside the new revision:

HTTP/1.1 201 Created
Content-Location: /v1/orders?user_id=<user_id>
ETag: <new revision>

{ /* The updated list of orders */ }

and gateway D will update the cache with the current data snapshot.



Creating a new order

Importantly, a�er this API refactoring, we end up with a system in which

we can remove gateway D and make the client itself  perform its duty.

Nothing prevents the client from:

Storing user_id on its side (or retrieving it from the token, if  the

format allows it) as well as the last known ETag of  the order list

Instead of  a single GET /v1/state request performing two HTTP calls

(GET /v1/profiles/{user_id} and GET /v1/orders?user_id=

<user_id>) which might be multiplexed thanks to HTTP/2

Caching the result on its side using standard libraries and/or plugins.



From the perspective of  implementing services B and C, the presence of  a

gateway a�ects nothing, with the exception of  security checks. Vice versa,

we might add a nested gateway to, let's say, split order storage into “cold”

and “hot” ones, or make either service B or C work as a gateway

themselves.

If  we refer to the beginning of  the chapter, we will �nd that we designed a

system fully compliant with the REST architectural principles:

Requests to services contain all the data needed to process the request

The interaction interface is uniform to the extent that we might freely

transfer gateway functions to the client or another intermediary

agent

Every resource is marked as cacheable

Let us reiterate once more that we can achieve exactly the same qualities

with RPC protocols by designing formats for describing caching policies,

resource versions, reading and modifying operation metadata, etc.

However, the author of  this book would �rstly, express doubts regarding

the quality of  such a custom solution and secondly, emphasize the

considerable amount of  code needed to be written to realize all the

functionality stated above.

Authorizing Stateless Requests

Let's elaborate a bit on the no-authorizing service solution (or, to be more

precise, the solution with the authorizing functionality being

implemented as a library or a local daemon inside services B, C, and D)

with all the data embedded in the authorization token itself. In this

scenario, every service performs the following actions:

�. Receives a request like this:

GET /v1/profiles/{user_id}
Authorization: Bearer <token>



�. Deciphers the token and retrieves a payload. For example, in the

following format:

{
// The identifier of a user
// who owns the token
"user_id",
// Token creation timestamp
"iat"

}

�. Checks that the permissions stated in the token payload match the

operation parameters (in our case, compares user_id passed as a

query parameter with user_id encrypted in the token itsel�) and

decides on the validity of  the operation.

The necessity to compare two user_ids might appear illogical and

redundant. However, this opinion is invalid; it originates from the

widespread (anti)pattern we started the chapter with, namely the stateful

determining of  operation parameters:

GET /v1/profile
Authorization: Bearer <token>

Such an endpoint e�ectively performs all three access control operations

in one place:

Authenticates the user by searching the passed token in the token

storage

Identi�es the user by retrieving the identi�er bound to the token

Authorizes the operation by enriching its parameters and implicitly

stipulating that users always have access to their own data.



The problem with this approach is that splitting these three operations is

not possible. Let us remind the reader about the authorization options we

described in the “Authenticating Partners and Authorizing API Calls”

chapter: in a complex enough system we will have to solve the problem of

allowing user X to make actions on behalf  of  user Y. For example, if  we sell

the functionality of  ordering beverages as a B2B API, the CEO of  the

partner company might want to control (personally or programmatically)

the orders the employees make.

In the case of  the “triple-stacked” access checking endpoint, our only

option is implementing a new endpoint with a new interface. With

stateless tokens, we might do the following:

�. Include in the token a list of  the users that the token allows access to:

{
// The list of identifiers
// of user profiles accessible
// with the token
"user_ids",
// Token creation timestamp
"iat"

}

�. Modify the permission-checking procedure (i.e. , make changes in the

code of  a local SDK or a daemon) so that it allows performing the

action if  the user_id query parameter value is included in the

user_ids list from the token payload.

This approach might be further enhanced by introducing granular

permissions to carry out speci�c actions, access levels, additional

ACL service calls, etc.

Importantly, the visible redundancy of  the format ceases to exist: user_id

in the request is now not duplicated in the token payload as these

identi�ers carry di�erent semantics: on which resource the operation is

performed against who performs it. The two o�en coincide, but this

coincidence is just a special case. Unfortunately, this doesn't negate the



fact that it's quite easy simply to forget to implement this unobvious check

in the code. This is the way.

NB. A curious reader may note an important problem with this setup: the

list of  authorized entities (user_ids in our case) is encoded in the token

itself  when it is issued. If  permissions change (let's say, if  a speci�c ID is

removed from the list), it will not a�ect existing tokens. This contributes to

the general problem of  invalidating stateless tokens; the usual approach to

tackle this is (a) making tokens themselves short-lived so they are

refreshed o�en, and (b) maintaining a cache of  issued or revoked tokens.

Though implementing these techniques might be challenging, it is anyway

a more scalable solution than checking permissions on every call.

References

JSON Web Token (JWT)

www.rfc-editor.org/rfc/rfc7519

Madden, N. (2020), 6.5 Handling token revocation

2

1

2

https://www.rfc-editor.org/rfc/rfc7519


Chapter 38. Designing a Nomenclature of URLs. The
CRUD Operations

As we noted on several occasions in the previous chapters, neither the

HTTP and URL standards nor REST architectural principles prescribe

concrete semantics for the meaningful parts of  a URL (notably, path

fragments and key-value pairs in the query). The rules for organizing

URLs in an HTTP API exist only to improve the API's readability and

consistency from the developers' perspective. However, this doesn't

mean they are unimportant. Quite the opposite: URLs in HTTP APIs are a

means of  describing abstraction levels and entities' responsibility areas. A

well-designed API hierarchy should be re�ected in a well-designed URL

nomenclature.

NB: The lack of  speci�c guidance from the speci�cation editors naturally

led to developers inventing it themselves. Many of  these spontaneous

practices can be found on the Internet, such as the requirement to use only

nouns in URLs. They are o�en claimed to be a part of  the standards or

REST architectural principles (which they are not). Nevertheless,

deliberately ignoring such self-proclaimed “best practices” is a rather risky

decision for an API vendor as it increases the chances of  being

misunderstood.

Traditionally, the following semantics are considered to be the default:

Path components (i.e. , fragments between / symbols) are used to

organize nested resources, such as /partner/{id}/coffee-

machines/{id}. A path can be further extended by adding new su�xes

to indicate subordinate sub-resources.

Query parameters are used to indicate non-strict connections (i.e. ,

“many-to-many” relations such as /recipes/?partner=<partner_id>)

or as a means to pass operation parameters (/search/?recipe=lungo).



This convention allows for re�ecting almost any API's entity nomenclature

decently and it is more than reasonable to follow it (and it's unreasonable

to de�antly neglect it). However, this indistinctly de�ned logic inevitably

leads to numerous variants of  interpreting it:

�. Where do metadata of  operations end and “regular” data begin, and

how acceptable is it to duplicate �elds in both places? For example,

one common practice in HTTP APIs is to indicate the type of  returned

data by adding an “extension” to the URL, similar to �le names in �le

systems (i.e. , when accessing the resource /v1/orders/{id}.xml, the

response will be in XML format, and when accessing

/v1/orders/{id}.json, it will be in JSON format). On the one hand,

Accept* headers are intended to determine the data format. On the

other hand, code readability is clearly improved by introducing a

“format” parameter directly in the URL.

�. As a consequence of  the previous point, how should the version of

the API itself  be correctly indicated in an HTTP API? At least three

options can be suggested, each of  which fully complies with the letter

of  the standard:

A path parameter: /v1/orders/{id}

A query parameter: /orders/{id}?version=1

A header:

GET /orders/{id} HTTP/1.1
X-OurCoffeeAPI-Version: 1

Even more exotic options can be added here, such as specifying the

schema in a customized media type or request protocol.

�. How exactly should the endpoints connecting two entities lacking a

clear relation between them be organized? For example, how should

a URL for preparing a lungo on a speci�c co�ee machine look?



/coffee-machines/{id}/recipes/lungo/prepare

/recipes/lungo/coffee-machines/{id}/prepare

/coffee-machines/{id}/prepare?recipe=lungo

/recipes/lungo/prepare?coffee_machine_id=<id>

/prepare?coffee_machine_id=<id>&recipe=lungo

/action=prepare&coffee_machine_id=<id>&recipe=lungo

All these options are semantically viable and generally speaking

equitable.

�. How strictly should the literal interpretation of  the VERB /resource

construct be enforced? If  we agree to follow the “only nouns in the

URLs” rule (logically, a verb cannot be applied to a verb, right?) then

we should use preparer or preparator in the examples above (and

the /action=prepare&coffee_machine_id=<id>&recipe=lungo is

unacceptable at all as there is no object to act upon). However, this

adds visual noise in the form of  “ator” su�xes but de�nitely doesn't

make the code more concise or readable.

�. If  the call signature implies that the operation is by default unsafe or

non-idempotent, does it mean that the operation must be unsafe or

non-idempotent? As HTTP verbs bear double semantics (the meaning

of  the operation vs. possible side e�ects), it implies ambiguity in

organizing APIs. Let's consider the /v1/search resource from our

study API. Which verb should be used to request it?

On one hand, GET /v1/search?query=<search query> explicitly

declares that there are no side e�ects (no state is overwritten)

and the results can be cached (given that all signi�cant

parameters are passed as parts of  the URL).

On the other hand, a response to a GET /v1/search request must

contain a representation of the /search resource. Are search results a

representation of  a search engine? The meaning of  a “search”

operation is much better described as “processing the

representation enclosed in the request according to the



resource's own speci�c semantics,” which is exactly the

de�nition of  the POST method. Additionally, how could we cache

search requests? The results page is dynamically formed from a

plethora of  various sources, and a subsequent request with the

same query might yield a di�erent result.

In other words, with any operation that runs an algorithm rather

than returns a prede�ned result (such as listing o�ers relevant to a

search phrase), we will have to decide what to choose: following verb

semantics or indicating side e�ects? Caching the results or hinting

that the results are generated on the �y?

NB: The authors of  the standard are also concerned about this

dichotomy and have �nally proposed the QUERY HTTP method , which

is basically a safe (i.e. , non-modifying) version of  POST. However, we

do not expect it to gain widespread adoption just as the existing

SEARCH verb  did not.

Unfortunately, we don't have simple answers to these questions. Within

this book, we adhere to the following approach: the call signature should,

�rst and foremost, be concise and readable. Complicating signatures for

the sake of  abstract concepts is undesirable. In relation to the mentioned

issues, this means that:

�. Operation metadata should not change the meaning of  the operation.

If  a request reaches the �nal microservice without any headers at all,

it should still be executable, although some auxiliary functionality

may degrade or be absent.

�. We use versioning in the path for one simple reason: all other

methods make sense only if, when changing the major version of  the

protocol, the URL nomenclature remains the same. However, if  the

resource nomenclature can be preserved, there is no need to break

backward compatibility.

1

2



�. Hierarchies are indicated if  they are unequivocal. If  a low-level entity

is a full subordinate of  a higher-level entity, the relation will be

expressed with nested path fragments.

If  there are doubts about the hierarchy persisting during further

development of  the API, it is more convenient to create a new

root path pre�x rather than employ nested paths.

�. For “cross-domain” operations (i.e. , when it is necessary to refer to

entities of  di�erent abstraction levels within one request) it is better

to have a dedicated resource speci�cally for this operation (e.g. , in the

example above, we would prefer the /prepare?coffee_machine_id=

<id>&recipe=lungo signature).

�. The semantics of  the HTTP verbs take priority over false non-safety /

non-idempotency warnings. Furthermore, the author of  this book

prefers using POST to indicate any unexpected side e�ects of  an

operation, such as high computational complexity, even if  it is fully

safe.

NB: Passing variables as either query parameters or path fragments a�ects

not only readability. Let's consider the example from the previous chapter

and imagine that gateway D is implemented as a stateless proxy with a

declarative con�guration. Then receiving a request like this:

GET /v1/state?user_id=<user_id>

and transforming it into a pair of  nested sub-requests:

GET /v1/profiles?user_id=<user_id>

GET /v1/orders?user_id=<user_id>



would be much more convenient than extracting identi�ers from the

path or some header and putting them into query parameters. The

former operation [replacing one path with another] is easily

described declaratively and is supported by most server so�ware out

of  the box. On the other hand, retrieving data from various

components and rebuilding requests is a complex functionality that

most likely requires a gateway supporting scripting languages and/or

plugins for such manipulations. Conversely, the automated creation

of  monitoring panels in services like the Prometheus+Grafana

bundle (or basically any other log analyzing tool) is much easier to

organize by path pre�x than by a synthetic key computed from

request parameters.

All this leads us to the conclusion that maintaining an identical URL

structure when paths are �xed and all the parameters are passed as

query parameters will result in an even more uniform interface,

although less readable and semantic. In internal systems, preferring

the convenience of  usage over readability is sometimes an obvious

decision. In public APIs, we would rather discourage implementing

this approach.

The CRUD Operations

One of  the most popular tasks solved by exposing HTTP APIs is

implementing C�UD interfaces. The “C�UD” acronym (which stands for

Create, Read, Update, Delete) was popularized in 1983 by James Martin

and gained a second wind with HTTP APIs gaining widespread acclaim.

The key concept is that every C�UD operation matches a speci�c HTTP

verb:

The “create” operation corresponds to the HTTP POST method.

The “read” operation corresponds to returning a representation of

the resource via the GET method.

The “update” operation corresponds to overwriting a resource with

either the PUT or PATCH method.



The “delete” operation corresponds to deleting a resource with the

DELETE method.

NB: In fact, this correspondence serves as a mnemonic to choose the

appropriate HTTP verb for each operation. However, we must warn the

reader that verbs should be chosen according to their de�nition in the

standards, not based on mnemonic rules. For example, it might seem like

deleting the third element in a list should be organized via the DELETE

method:

DELETE /v1/list/{list_id}/?position=3

However, as we remember, doing so is a grave mistake: �rst, such a

call is non-idempotent, and second, it violates the GET  / DELETE

consistency principle.

The C�UD/HTTP correspondence might appear convenient as every

resource is forced to have its own URL and each operation has a suitable

verb. However, upon closer examination, we will quickly understand that

the correspondence presents resource manipulation in a very simpli�ed,

and, even worse, poorly extensible way.

1. Creating

Let's start with the resource creation operation. As we remember from the

“Synchronization Strategies” chapter, in any important subject area,

creating entities must be an idempotent procedure that ideally allows for

controlling concurrency. In the HTTP API paradigm, idempotent creation

could be implemented using one of  the following three approaches:

�. Through the POST method with passing an idempotency token (in

which capacity the resource ETag might be employed):



POST /v1/orders/?user_id=<user_id> HTTP/1.1
If-Match: <revision>

{ … }

�. Through the PUT method, implying that the entity identi�er is

generated by the client. Revision still could be used for controlling

concurrency; however, the idempotency token is the URL itself:

PUT /v1/orders/{order_id} HTTP/1.1
If-Match: <revision>

{ … }

�. By creating a dra� with the POST method and then committing it with

the PUT method:

POST /v1/drafts HTTP/1.1

{ … }
→
HTTP/1.1 201 Created
Location: /v1/drafts/{id}

PUT /v1/drafts/{id}/commit
If-Match: <revision>

{"status": "confirmed"}
→
HTTP/1.1 200 OK
Location: /v1/orders/{id}

Approach #2 is rarely used in modern systems as it requires trusting the

client to generate identi�ers properly. If  we consider options #1 and #3, we

must note that the latter conforms to HTTP semantics better as POST

requests are considered non-idempotent by default and should not be

repeated in case of  a timeout or server error. Therefore, repeating a

request would appear as a mistake from an external observer's



perspective, and it could indeed become one if  the server changes the If-

Match header check policy to a more relaxed one. Conversely, repeating a

PUT request (assuming that getting a timeout or an error while performing

a “heavy” order creation operation is much more probable than in the case

of  a “lightweight” dra� creation) could be automated and would not result

in order duplication even if  the revision check is disabled.

2. Reading

Let's continue. The reading operation is at �rst glance straightforward:

GET /v1/orders/{id}.

However, upon closer inspection, it becomes less simple. First, the client

should have a method to retrieve the ongoing orders executed on behalf  of

the user, which requires creating a separate enumerator resource:

GET /v1/orders/?user_id=<user_id>.

Returning potentially long lists in a single response is a bad idea, so we

will need pagination:

GET /v1/orders/?user_id=<user_id>&cursor=<cursor>.

If  there is a long list of  orders, the user will require �lters to navigate it.

Let's say we introduce a beverage type �lter:

GET /v1/orders/?user_id=<user_id>&recipe=lungo.

However, if  the user needs to see a single list containing both latte and

lungo orders, this interface becomes much less viable as there is no

universally adopted technique for passing structures in that are more

complex than key-value pairs. Soon, we will face the need to have a search

endpoint with rich semantics, which naturally should be represented as a

POST request body.



Additionally, if  some media data could be attached to an order (such as

photos), a separate endpoint to expose them should be developed:

GET /v1/orders/{order_id}/attachments/{id}.

3. Updating

The problem of  partial updates was discussed in detail in the

corresponding chapter of  “The API Patterns” section. To quickly recap:

The concept of  fully overwriting resources with PUT is viable but soon

faces problems when working with calculated or immutable �elds

and organizing collaborative editing. It is also suboptimal in terms of

tra�c consumption.

Partially updating a resource using the PATCH method is potentially

non-idempotent (and likely non-transitive), and the aforementioned

concerns regarding automatic retries are applicable to it as well.

If  we need to update a complex entity, especially if  collaborative editing is

needed, we will soon �nd ourselves leaning towards one of  the following

two approaches:

Decomposing the PUT functionality into a set of  atomic nested

handlers (like PUT /v1/orders/{id}/address, PUT

/v1/orders/{id}/volume, etc.), one for each speci�c operation.

Introducing a resource to process a list of  changes encoded in a

specially designed format. Likely, this resource will also require

implementing a dra�/commit scheme via a POST + PUT pair of

methods.

If  media data is attached to an entity, we will additionally require more

endpoints to amend this metadata.



4. Deleting

Finally, with deleting resources the situation is simple: in modern services,

data is never deleted, only archived or marked as deleted. Therefore,

instead of  a DELETE /v1/orders/{id} endpoint there should be PUT

/v1/orders/{id}/archive or PUT /v1/archive?order=<order_id>.

Real-Life CRUD Operations

This discourse is not intended to be perceived as criticizing the idea of

C�UD operations itself. We simply point out that in complex subject areas,

cutting edges and sticking to some mnemonic rules rarely play out. We

started with the idea of  having two URLs and four or �ve methods to apply

to them:

/v1/orders/ to be acted upon with POST

/v1/orders/{id} to be acted upon with GET / PUT / DELETE / optionally

PATCH.

However, if  we add the following requirements:

Concurrency control in entity creation

Collaborative editing

Archiving entities

Searching entities with �lters then we end up with the following

nomenclature of  8 URLs and 9-10 methods:

GET /v1/orders/?user_id=<user_id> to retrieve the ongoing orders,

perhaps with additional simple �lters

/v1/orders/drafts/?user_id=<user_id> to be acted upon with POST to

create an order dra� and with GET to retrieve existing dra�s and the

revision

PUT /v1/orders/drafts/{id}/commit to commit the dra�

GET /v1/orders/{id} to retrieve the newly created order

POST /v1/orders/{id}/drafts to create a dra� for applying partial

changes



PUT /v1/orders/{id}/drafts/{id}/commit to apply the dra�ed

changes

/v1/orders/search?user_id=<user_id> to be acted upon with either

GET (for simple cases) or POST (in more complex scenarios) to search

for orders

PUT /v1/orders/{id}/archive to archive the order

plus presumably a set of  operations like POST /v1/orders/{id}/cancel

for executing atomic actions on entities. This is what is likely to happen in

real life: the idea of  C�UD as a methodology for describing typical

operations applied to resources with a small set of  uniform verbs quickly

evolves towards a bucket of  di�erent endpoints, each covering a speci�c

aspect of  working with the entity during its lifecycle. This only proves that

mnemonics are just helpful starting points; each situation requires a

thorough understanding of  the subject area and designing an API that �ts

it. However, if  your task is to develop a “universal” interface that �ts every

kind of  entity, we would strongly suggest starting with something like the

ten-method nomenclature described above.

References

The HTTP QUE�Y Method

www.ietf.org/archive/id/dra�-ietf-httpbis-safe-method-w-body-02.html

Web Distributed Authoring and Versioning (WebDAV) SEA�CH

www.rfc-editor.org/rfc/rfc5323

1

2

https://www.ietf.org/archive/id/draft-ietf-httpbis-safe-method-w-body-02.html
https://www.rfc-editor.org/rfc/rfc5323


Chapter 39. Working with HTTP API Errors

The examples of  organizing HTTP APIs discussed in the previous chapters

were mostly about “happy paths,” i.e. , the direct path of  working with an

API in the absence of  obstacles. It's now time to talk about the opposite

case: how HTTP APIs should work with errors and how the standard and

the REST architectural principles can help us.

Imagine that some actor (a client or a gateway) tries to create a new order:

POST /v1/orders?user_id=<user_id> HTTP/1.1
Authorization: Bearer <token>
If-Match: <revision>

{ /* order parameters */ }

What problems could potentially happen while handling the request? O�

the top of  the mind, it might be:

�. The request cannot be parsed (invalid symbols, syntax violation, etc.)

�. The authorization token is missing

�. The authorization token is invalid

�. The token is valid, but the user is not permitted to create new orders

�. The user is deleted or deactivated

�. The user identi�er is invalid or does not exist

�. The revision is missing

�. The revision does not match the actual one

�. Some required �elds are missing in the request body

��. A value of  a �eld exceeds the allowed boundaries

��. The limit for the number of  requests reached

��. The server is overloaded and cannot respond

��. Unknown server error (i.e. , the server is broken to the extent that it's

impossible to understand why the error happened).



From general considerations, the natural idea is to assign a status code for

each mistake. Obviously, the 403 Forbidden code �ts well for mistake #4,

and the 429 Too Many Requests for #11. However, let's not be rash and

ask �rst for what purpose are we assigning codes to errors?

Generally speaking, there are three kinds of  actors in the system: the user,

the application (a client), and the server. Each of  these actors needs to

understand several important things about the error (and the answers

could actually di�er for each of  them):

�. Who made the mistake: the end user, the developer of  the client, the

backend developer, or another interim agent such as the network

stack programmer?

And let's not forget about the possibility of  the mistake being

deliberately made by either an end user or a client developer while

trying to blunt-force hijack the account of  another user.

�. Is it possible to �x the error by just repeating the request?

If  yes, then a�er what period of  waiting?

�. If  it is not the case, is it still possible to �x it by reformulating the

request?

�. If  the error cannot be resolved, what should be done about it?

One of  these questions is easily answered in the HTTP API paradigm: the

desired interval of  repeating the request might be indicated in a Retry-

After header. Also, HTTP helps with question #1: to understand which side

is the cause of  the error, the �rst digit in the HTTP status code is used (see

below).

With the other questions, the situation is unfortunately much more

complicated.



Client Errors

Status codes that start with the digit 4 indicate that it was the user or the

client who made a mistake, or at least the server decided so. Usually,

repeating a request that resulted in a 4xx error is meaningless: the request

will never be ful�lled unless some additional actions are performed.

However, there are notable exceptions, most importantly 429 Too Many

Requests and 404 Not Found. The latter implies some “uncertainty state”

according to the standard: the server could use it if  exposing the real cause

of  the error is undesirable. A�er receiving a 404, the request might be

repeated, possibly yielding a di�erent outcome. To indicate the persistent

non-existence of  a resource, a separate 410 Gone status is used.

A more interesting question is what the client can (or must) do if  such an

error is received. As we discussed in the “Isolating Responsibility Areas”

chapter, if  the error can be resolved, there must be a machine-readable

description for the client to interpret. In the case it cannot, human-

readable instructions should be provided for the user (even “Try restarting

the application” is a better user experience than “Unknown error

happened”) and for the client developer.

If  we try to apply this principle to HTTP APIs, we will soon learn that the

situation is complicated. On one hand, the protocol includes a lot of  codes

that indicate speci�c problems with using the protocol, such as 405

Method Not Allowed (indicates that the verb in the request cannot be

applied to the requested resource), 406 Not Acceptable (the server

cannot return a representation that satis�es the Accept* headers in the

request), 411 Length Required, 414 URI Too Long, etc. The client code

might process these errors and sometimes even perform some actions to

mitigate them (for example, add a Content-Length header in case of  a 411

error). However, this is hardly applicable to business logic. If  the server

returns a 429 Too Many Requests if  some limit is exceeded, there are no

standardized means of  indicating which exact limit was hit.



Sometimes, the absence of  a common approach to describing business

logic errors is circumvented by using di�erent codes with almost identical

semantics (or just randomly chosen codes) to distinguish between

di�erent causes of  the error. One notable example is the widely adopted

usage of  the 401 Unauthorized status code to indicate the absence or the

invalid value of  authorization headers, which is a signal for an application

to ask the user to log in. This usage contradicts the standard (which

requires that a 401 response must contain the WWW-Authenticate header

that describes the methods of  authorization; we are unaware of  a single

API that follows this requirement), but it has become a de facto standard

itself.

Even if  we choose this approach, there are very few status codes that can

re�ect di�erent aspects of  the same error type. In fact, we face the

situation that all the multiplicity of  business-bound errors is to be

returned using a very limited set of  status codes:

400 Bad Request for all the errors related to request validation issues.

(Some purists insist that 400 corresponds to format violations such as

invalid JSON. For logical errors, the 422 Unprocessable Content code

is to be used. This actually changes nothing regarding the discussed

problem.)

403 Forbidden for any problems related to authorizing the user's

actions.

404 Not Found if  any of  the entities referred to in the request are non-

existent or if  exposing the real cause of  the error is undesirable.

409 Conflict if  data integrity is violated.

410 Gone if  the resource was deleted.

429 Too Many Requests if  some quotas are exceeded.

The editors of  the speci�cation are very well aware of  this problem as they

state that “the server SHOULD send a representation containing an

explanation of  the error situation, and whether it is a temporary or

permanent condition.” This, however, contradicts the entire idea of  a

uniform machine-readable interface (and so does the idea of  using



arbitrary status codes). (Let us additionally emphasize that this lack of

standard tools to describe business logic-bound errors is one of  the

reasons we consider the REST architectural style as described by Fielding

in his 2008 article non-viable. The client must possess prior knowledge of

error formats and how to work with them. Otherwise, it could restore its

state a�er an error only by restarting the application.)

NB: Not long ago, the editors of  the standard proposed their own version

of  the JSON description speci�cation for HTTP errors — RFC 9457 . You

can use it, but keep in mind that it covers only the most basic scenario:

The error subtype is not transmitted in the metadata.

There is no distinction between a message for the user and a message

for the developer.

The speci�c machine-readable format for error descriptions is le� to

the discretion of  the developer.

Additionally, there is a third dimension to this problem in the form of

webserver so�ware for monitoring system health that o�en relies on

status codes to plot charts and emit noti�cations. However, two errors

represented with the same status code — let's say, wrong password and

expired token — might be very di�erent. The increased rate of  the former

might indicate brute-forcing of  accounts, while an unusually high

frequency of  the latter could be a result of  a client error if  a new version of

an application wrongly caches authorization tokens.

All these observations naturally lead us to the following conclusion: if  we

want to use errors for diagnostics and (possibly) helping clients to recover,

we need to include machine-readable metadata about the error subtype

and, possibly, additional properties to the error body with a detailed

description of  the error. For example, as we proposed in the “Describing

Final Interfaces” chapter:

1



POST /v1/coffee-machines/search HTTP/1.1

{ "recipes": ["lngo"],
"position": {"latitude": 110, "longitude": 55}}

→ 
HTTP/1.1 400 Bad Request
X-OurCoffeeAPI-Error-Kind: wrong_parameter_value

{
"reason": "wrong_parameter_value",
"localized_message":
"Something is wrong.↵

     Contact the developer of the app.",
"details": { "checks_failed": [

    { "field": "recipe",
"error_type": "wrong_value",
"message":
"Unknown value: 'lngo'.↵

          Did you mean 'lungo'?" },
    { "field": "position.latitude",

"error_type": "constraint_violation",
"constraints": { "min": -90, "max": 90 },
"message": "'position.latitude' value↵

        must fall within the [-90, 90] interval" }
  ]}
}

Let us also remind the reader that the client must treat unknown 4xx

status codes as a 400 Bad Request error. Therefore, the (meta)data format

for the 400 error must be as general as possible.



Server Errors

5xx errors indicate that the client did everything right, and the problem is

server-bound. For the client, the only important thing about the server

error is whether it makes sense to repeat the request (and if  yes, then

when). Keeping in mind that in publicly available APIs, the real reason for

the error is usually not exposed, having just the 500 Internal Server

Error and 503 Service Unavailable codes is enough for most subject

areas. (The latter is needed to indicate that the denial of  service state is

temporary and it might be replaced with just a Retry-After header to the

500 error.)

However, for internal systems, this argumentation is wrong. To build

proper monitoring and noti�cation systems, server errors must contain

machine-readable error subtypes, just like the client errors. The same

approaches are applicable (either using arbitrary status codes and/or

passing error kind as a header); however, this data must be stripped o�  by

a gateway that marks the border between external and internal systems

and replaced with general instructions for both developers and end users,

describing actions that need to be performed upon receiving an error.

POST /v1/orders/?user_id=<user id> HTTP/1.1
If-Match: <revision>

{ "parameters" }
→
// The response the gateway received
// from the server, the metadata
// of which will be used for
// monitoring and diagnostics
HTTP/1.1 500 Internal Server Error
// Error kind: timeout from the DB
X-OurCoffeAPI-Error-Kind: db_timeout
{ /*
   * Additional data, such as
   * which host returned an error
   */ }



// The response as returned to
// the client. The details regarding
// the server error are removed
// and replaced with instructions
// for the client. As at the gateway
// level it is unknown whether
// order creation succeeded, the client
// is advised to repeat the request 
// and/or retrieve the actual state.
HTTP/1.1 500 Internal Server Error
Retry-After: 5

{ 
"reason": "internal_server_error",
"localized_message": "Cannot get↵

    a response from the server.↵
    Please try repeating the operation
    or reload the page.",
"details": {
"can_be_retried": true,
"is_operation_failed": "unknown"

  }
}

However, we go on a slippery slope here. The contemporary practice of

implementing HTTP API clients allows for repeating safe requests (e.g. ,

GET, HEAD, and OPTIONS methods). In the case of  unsafe methods, developers

need to write code to repeat the request, and to do so they need to read the

documentation very carefully to check if  it is the desired behavior and if  it

is actually safe.

Theoretically, with idempotent PUT and DELETE it should be more

convenient. Practically, as many developers let this knowledge pass them,

frameworks for working with HTTP APIs will likely not repeat these

requests. Still, we can get some bene�t from following the standards as the

signature itself  indicates that the request can be retried.

As for more complex operations, to make developers aware that they can

repeat a potentially unsafe operation, we could introduce a format

describing the possible actions in the error response itself… However,

developers seldom expect to �nd such instructions in the error body,

probably because programmers rarely see 5xx errors during development,



unlike their 4xx counterparts, and testing environments usually do not

provide capabilities to emulate server errors. All in all, you will have to

describe the desirable actions in the documentation. (Be aware that this

instruction will likely be ignored. This is the way.)

Organizing HTTP API Error Nomenclature in Practice

As it is obvious from what was discussed above, there are essentially three

approaches to working with errors in HTTP APIs:

�. Applying an “extended interpretation” to the status code

nomenclature, or in plain words, selecting or inventing a new status

code for each new type of  error introduced. (The author of  this book

has frequently observed an approach to API development that

included choosing a status code based on wording resembling the

error cause, disregarding its description in the standard completely.)

�. Abolishing the use of  status codes and developing a format for errors

enveloped in a 200 HTTP response. Most RPC frameworks choose this

direction.

2a. A subvariant of  this strategy is using just two status codes

(400 for every client error, 500 for every server error), optionally

complemented by a third one (404 to indicate situations of

uncertainty).

�. Employing a mixed approach, i.e. , using status codes in accordance

with their semantics to indicate an error family with additional

(meta)data being passed in a specially developed format (similar to

the code samples we gave above).



Obviously, only approach #3 could be considered compliant with the

standard. Let us be honest and say that the bene�ts of  following it

(especially compared to option #2a) are not very signi�cant and only

comprise better readability of  logs and transparency for intermediate

proxies.

References

RFC 9457 Problem Details for HTTP APIs

www.rfc-editor.org/rfc/rfc9457.html

1

https://www.rfc-editor.org/rfc/rfc9457.html


Chapter 40. Final Provisions and General
Recommendations

Let's summarize what was discussed in the previous chapters. To design a

�ne HTTP API one needs to:

�. Describe a happy path, i.e. draw a diagram of  all HTTP calls that occur

during a normal work cycle of  an application.

�. Interpret every call as an operation executed on a resource and

assemble a nomenclature of  URLs and applicable methods

accordingly.

�. Enumerate errors that might occur during operation execution and

determine paths to restore the application state for clients a�er

receiving an error.

�. Decide which functionality will be communicated at the HTTP

protocol level, i.e. , which standard protocol capabilities to use in

conjunction with what tools and so�ware and the extent of  their

usage.

�. Develop a detailed speci�cation regarding the aforementioned list

points.

�. Check yourselves: elaborate on paragraphs 1-3 to write pseudo-code

for the application's business logic in accordance with the

speci�cation, and evaluate the convenience, understandability and

readability of  your API.

Additionally, we'd like to provide some code style advice:

�. Do not di�erentiate paths with trailing / and without it. Employ a

default policy (we would rather recommend ending paths with / for a

simple reason: it allows for referring to operations on the domain

root resource in a readable manner as VERB /). If  you decide to

prohibit one of  the variants (let's say, all URLs must end with a

trailing slash), make a redirect or provide a very readable error

message if  a developer tries to call a URL formatted otherwise.



�. Include common headers (such as Date, Content-Type, Content-

Encoding, Content-Length, Cache-Control, Retry-After, etc.) in the

responses and generally avoid relying on clients to guess default

protocol parameters correctly.

�. Support the OPTIONS method and the CORS protocol  just in case your

API needs to be accessed from a Web browser.

�. Choose a casing rule and a rule for transforming casing while moving

a parameter from one part of  an HTTP request to another.

�. Always leave an opportunity for backward-compatible extension of

an API method. In particular, always return a JSON object as the

endpoint response root as objects can always be extended with a new

�eld, unlike arrays and primitives.

Let us also note that an empty string is invalid JSON, so you need

to return an empty object {} in 200 responses even if  it doesn't

have a speci�c meaning. Alternatively, you can use the 204 No

Content status code with an empty body, which is not extensible.

�. For every GET response, provide explicit caching parameters

(otherwise, there is always a chance that a client or an intermediate

agent invents them on their own).

�. Do not employ known possibilities to serve requests in violation of

the standard and avoid exploiting “gray zones” of  the protocol. In

particular:

Do not place unsafe operations behind the GET verb, and do not

place non-idempotent operations behind the PUT  / DELETE

methods.

Maintain the GET / PUT / DELETE operations symmetry.

Do not allow GET  / HEAD  / DELETE requests to have a body and do

not provide bodies in response to HEAD requests or alongside the

204 status code.

1



Do not invent your own standards for passing arrays and nested

objects as query parameters. It is better to use an HTTP verb that

allows having a body, or as a last resort pass the parameter as a

Base64-encoded JSON-stringi�ed value.

Do not put parameters that require escaping (i.e. , non-

alphanumeric ones) in a path or a domain of  a URL. Use query or

body parameters for this purpose.

�. Familiarize yourself  with at least the basics of  typical vulnerabilities

in HTTP APIs used by attackers, such as:

CSRF

SSRF

HTTP Response Splitting

Unvalidated Redirects and Forwards

and include protection against these attack vectors at the webserver

so�ware level. The OWASP community provides a good cheatsheet on

the best HTTP API security practices,  or one may refer to the Andrew

Ho�man's  and Neil Madden's  books we've already recommended

earlier.

In conclusion, we would like to make the following statement: building an

HTTP API is relying on the common knowledge of  HTTP call semantics

and drawing bene�ts from it by leveraging various so�ware built upon

this paradigm, from client frameworks to server gateways, and developers

reading and understanding API speci�cations. In this sense, the HTTP

ecosystem provides probably the most comprehensive vocabulary, both in

terms of  profoundness and adoption, compared to other technologies,

allowing for describing many di�erent situations that may arise in client-

server communication. While the technology is not perfect and has its

�aws, for a public API vendor, it is the default choice, and opting for other

technologies rather needs to be substantiated as of  today.

2

3

4

5

6

7 8



References

Fetch Living Standard. CORS protocol

fetch.spec.whatwg.org/#http-cors-protocol

Cross Site Request Forgery (CSRF)

owasp.org/www-community/attacks/csrf

Server Side Request Forgery

owasp.org/www-community/attacks/Server_Side_Request_Forgery

HTTP Response Splitting

owasp.org/www-community/attacks/HTTP_Response_Splitting

Unvalidated Redirects and Forwards Cheat Sheet

cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html

REST Security Cheat Sheet

cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html

Ho�man, A. (2024), Web Application Security

Madden, N. (2020), API Security in Action

1

2

3

4

5

6

7

8

https://fetch.spec.whatwg.org/#http-cors-protocol
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery
https://owasp.org/www-community/attacks/HTTP_Response_Splitting
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html


SECTION V. SDKS & UI LIBRARIES

Chapter 41. On Terminology. An Overview of
Technologies for UI Development

As we mentioned in the Introduction, the term “SDK” (which stands for

“So�ware Development Kit”) lacks concrete meaning. The common

understanding is that an SDK di�ers from an API as it provides both

program interfaces and tools to work with them. This de�nition is hardly

satisfactory as today any technology is likely to be provided with a bundled

toolset.

However, there is a very speci�c narrow de�nition of  an SDK: it is a client

library that provides a high-level interface (usually a native one) to some

underlying platform (such as a client-server API). Most o�en, we talk

about libraries for mobile OSes or Web browsers that work on top of  a

general-purpose HTTP API.

Among such client SDKs, one case is of  particular interest to us: those

libraries that not only provide programmatic interfaces to work with an

API but also o�er ready-to-use visual components for developers. A classic

example of  such an SDK is the UI libraries provided by cartographical

services. Since developing a map engine, especially a vector one, is a very

complex task, maps API vendors provide both “wrappers” to their HTTP

APIs (such as a search function) and visual components to work with

geographical entities. The latter o�en include general-purpose elements

(such as buttons, placemarks, context menus, etc.) that can be used

independently from the main functionality of  the API.

This Section will be dedicated to these two types of  program toolkits:

Client “wrappers” that work with client-server APIs

Client libraries that contain visual components with which end users

might interact.



To avoid being wordy, we will use the term “SDK” for the former and “UI

libraries” for the latter.

NB: Strictly speaking, a UI library might either include a client-server API

“wrapper” or not (i.e. , just provide a “pure” API to some underlying system

engine). In this Section, we will mostly talk about the �rst option as it is

the most general case and the most challenging one in terms of  API

design. Most SDK development patterns we will discuss are also applicable

to “pure” libraries.

Selecting a Framework for UI Component Development

As UI is a high-level abstraction built upon OS primitives, there are

specialized visual component frameworks available for almost every

platform. Choosing such a framework might be regretfully challenging.

For instance, in the case of  the Web platform, which is both low-level and

highly popular, the number of  competing technologies for SDK

development is beyond imagination. We could mention the most popular

ones today, including React , Angular , Svelte , Vue.js , as well as those

that maintain a strong presence like Bootstrap  and Ember.  Among these

technologies, React demonstrates the most widespread adoption, still

measured in single-digit percentages.  At the same time, components

written in “pure” JavaScript/CSS o�en receive criticism for being less

convenient to use in these frameworks as each of  them implements a rigid

methodology. The situation with developing visual libraries for Windows

is quite similar. The question of  “which framework to choose for

developing UI components for these platforms” regretfully has no simple

answer. In fact, one will need to evaluate the markets and make decisions

regarding each individual framework.

In the case of  actual mobile platforms (and MacOS), the current state of

a�airs is more favorable as they are more homogeneous. However, a

di�erent problem arises: modern applications typically need to support

several such platforms simultaneously, which leads to code (and API

nomenclatures) duplication.

1 2 3 4

5 6

7



One potential solution could be using cross-platform mobile (React

Native , Flutter , Xamarin , etc.) and desktop (JavaFX , QT , etc.)

frameworks, or specialized technologies for speci�c tasks (such as Unity

for game development). The inherent advantages of  these technologies are

faster code-writing and universalism (of  both code and so�ware

engineers). The disadvantages are obvious as well: achieving maximum

performance could be challenging, and many platform tools (such as

debugging and pro�ling) will not work. As of  today, we rather see a parity

between these two approaches (several independent applications for each

platform vs. one cross-platform application).

8 9 10 11 12

13



References

React

react.dev

Angular

angular.io

Svelte

svelte.dev

Vue.js

vuejs.org

Bootstrap

getbootstrap.com

Ember

emberjs.com

How Many Websites Use React in 2023? (Usage Statistics)

increditools.com/react-usage-statistics

React Native

reactnative.dev

Flutter

�utter.dev

Xamarin

dotnet.microso�.com/en-us/apps/xamarin

JavaFX

openjfx.io

QT

www.qt.io

Unity

docs.unity3d.com/Manual/index.html

1

2

3

4

5

6

7

8

9

10

11

12

13

https://react.dev/
https://angular.io/
https://svelte.dev/
https://vuejs.org/
https://getbootstrap.com/
https://emberjs.com/
https://increditools.com/react-usage-statistics/
https://reactnative.dev/
https://flutter.dev/
https://dotnet.microsoft.com/en-us/apps/xamarin
https://openjfx.io/
https://www.qt.io/
https://docs.unity3d.com/Manual/index.html


Chapter 42. SDKs: Problems and Solutions

The �rst question we need to clarify about SDKs (let us reiterate that we

use this term to denote a native client library that allows for working with

a technology-agnostic underlying client-server API) is why SDKs exist in

the �rst place. In other words, why is using “wrappers” more convenient

for frontend developers than working with the underlying API directly?

Several reasons are obvious:

�. Client-server protocols are usually designed to allow for the

implementation of  clients in any programming language. This

implies that the data received from such an API will not be in the

most convenient format. For example, there is no “datetime” type in

JSON, and the dates need to be passed as strings. Similarly, most

mainstream protocols don't support (de)serializing hash tables.

�. Most programming languages are imperative (and many of  them are

object-oriented) while most data formats are declarative. Working

with raw data received from an API endpoint is inconvenient in terms

of  writing code. Client developers would prefer this data to be

represented as objects (class instances).

�. Di�erent programming languages imply di�erent code styles (casing,

namespace organization, etc.), while the practice of  tailoring data

formats in APIs to match the client's code style is very rare.

�. Platforms and/or programming languages usually prescribe how

error handling should be organized — typically, through throwing

exceptions or employing defer/panic techniques — which is hardly

applicable to the concept of  uniform APIs.



�. APIs are provided with instructions (human- or machine-readable)

on how to repeat requests if  the API endpoints are unavailable. This

logic needs to be implemented by a client developer as client

frameworks rarely provide it (and it would be very dangerous to

automatically repeat potentially non-idempotent requests). Though

this point might appear insigni�cant, it is in fact very important for

every vendor of  a popular API, as safeguards need to be installed to

prevent API servers from overloading due to an uncontrollable spike

of  request repeats. This is achieved through:

Reading the Retry-After header and avoiding retrying the

endpoint earlier than the time stated by the server

Introducing exponentially growing intervals between

consecutive requests.

This is what client developers should do regarding server errors, but

they o�en skip this part, especially if  they work for external partners.

Having an SDK would resolve these issues as they are, so to say, trivial: to

�x them, the principles of  working with the API aren't changed. For every

request and response, we construct the corresponding SDK method, and

we only need to set rules for doing this transformation, i.e. , adapting

platform-independent API formats to speci�c platforms. Additionally, this

transformation usually could be automated.

However, there are also non-trivial problems we face while developing an

SDK for a client-server API:

�. In client-server APIs, data is passed by value. To refer to some

entities, specially designed identi�ers need to be used. For example, if

we have two sets of  entities — recipes and o�ers — we need to build a

map to understand which recipe corresponds to which o�er:



// Request 'lungo' and 'latte' recipes
let recipes = await api
  .getRecipes(['lungo', 'latte']);
// Build a map that allows to quickly
// find a recipe by its identifier
let recipeMap = new Map();
recipes.forEach((recipe) => {
  recipeMap.set(recipe.id, recipe);
});
// Request offers for latte and lungo
// in the vicinity
let offers = await api.search({
recipes: ['lungo', 'latte'],

  location
});
// To show offers to the user, we need
// to take the `recipe_id` in the offer,
// find the recipe description in the map
// and enrich the offer data with
// the recipe data
promptUser(
'What we have found',

  offers.map((offer) => {
let recipe = recipeMap

      .get(offer.recipe_id);
return {offer, recipe};

  }));

This piece of  code would be half  as long if  we received o�ers from the

api.search SDK method with a reference to a recipe:

// Request 'lungo' and 'latte' recipes
let recipes = await api
  .getRecipes(['lungo', 'latte']);
// Request offers for latte and lungo
// in the vicinity
let offers = await api.search({
// Pass the references to the recipes,
// not their identifiers

  recipes,
  location
});

promptUser(
'What we have found',
// Offer already contains a reference
// to the recipe

  offers
);



�. Client-server APIs are typically decomposed so that one response

contains data regarding one kind of  entity. Even if  the endpoint is

composite (i.e. , allows for combining data from di�erent sources

depending on parameters), it is still the developer's responsibility to

use these parameters. The code sample from the previous example

would be even shorter if  the SDK allowed for the initialization of  all

related entities:

// Request offers for latte and lungo
// in the vicinity
let offers = await api.search({
recipes: ['lungo', 'latte'],

  location
});

// The SDK requested latte and lungo
// data from the `getRecipes` endpoint
// under the hood
promptUser(
'What we have found',

  offers
);

The SDK can also populate program caches for the entities (if  we do

not rely on protocol-level caching) and/or allow for the “lazy”

initialization of  objects.

Generally speaking, storing pieces of  data (such as authorization

tokens, idempotency keys, dra� identi�ers in two-phase commits,

etc.) between requests is the client's responsibility, and it is rather

hard to formalize the rules. If  an SDK takes responsibility for

managing the data, there will be far fewer mistakes in application

code.

�. Receiving callbacks in client-server APIs, even if  it is a duplex

communication channel, is rather inconvenient to work with and

requires object mapping as well. Even if  a push model is

implemented, the resulting client code will be rather bulky:



// Retrieve ongoing orders
let orders = await api
  .getOngoingOrders();
// Build order map
let orderMap = new Map();
orders.forEach((order) => {
  orderMap.set(order.id, order);
});
// Subscribe to state change
// events
api.subscribe(
'order_state_change',
(event) => {
// Find the corresponding order
let order = orderMap

      .get(event.order_id);
// Take some actions, like
// updating the UI 
// in the application
UI.update(order);

  }
);

If  the API requires polling a state change endpoint, developers will

additionally need to implement periodic requesting of  the endpoint

(and install safeguards to avoid overloading the server).

Meanwhile, this code sample already contains several mistakes:

First, the list of  orders is requested, and then the state change

listener is added. If  some order changes its state between those

two calls, the application would never learn about this fact.

If  an event comes with an identi�er of  some unknown order

(created from a di�erent device or in a di�erent execution

thread), the map lookup operation will return an empty result,

and the listener will throw an exception that is not properly

handled anywhere.



Once again, we face a situation where an SDK lacking important

features leads to mistakes in applications that use it. It would be much

more convenient for a developer if  an order object allowed for

subscribing to its status updates without the need to learn how it

works at the transport level and how to avoid missing an event.

let order = await api
  .createOrder(…)
// No need to subscribe to
// the entire status change
// stream and filter it

  .subscribe(
'state_change',
(event) => { … }

  );

NB: This code relies on the idea that the order is being updated in a

consistent manner. Even if  the state changes on the server side

between the createOrder and subscribe calls, the order object's

state will be consistent with the state_change events �red.

Organizing this technically is the responsibility of  the SDK

developers.

�. Restoring a�er encountering business logic-bound errors is typically

a complex procedure. As it can hardly be described in a machine-

readable manner, client developers have to elaborate on the scenarios

on their own.



// Request offers
let offers = await api.search(…);
// The user selects an offer
let selectedOffer = 
await promptUser(offers);

let order;
let offer = selectedOffer;
let numberOfTries = 0;
do {
// Trying to create an order
try {

    numberOfTries++;
    order = await api.createOrder(offer, …);
  } catch (e) {

// If the number of tries exceeded
// some reasonable limit, it's
// better to give up
if (numberOfTries > TRY_LIMIT) {
throw new NoRetriesLeftError();

    }
// If the error is of the “offer
// expired” kind…
if (e.type == api.OfferExpiredError) {
// Trying to get a new offer

      offer = await api.renewOffer(offer);
    } else {

// Other errors
      …
    }
  }
} while (!order);

As we can see, the simple operation “try to renew an o�er if  needed”

results in a bulky piece of  code that is simultaneously error-prone

and totally unnecessary as it doesn't introduce any new functionality

visible to end users. For an application developer, it would be more

convenient if  this error (“o�er expired”) were not exposed in the SDK, i.e. ,

the SDK automatically renewed o�ers if  needed.

Such situations also occur when working with APIs featuring

eventual consistency or optimistic concurrency control — generally

speaking, with any API where background errors are expected (which

is rather a norm of  life for client-server APIs). For frontend

developers, writing code to implement policies like “read your writes”



(i.e. , passing tokens of  the last known operation to subsequent

queries) is essentially a waste of  time.

�. Finally, one more important function that a customized SDK might

ful�ll is isolating the low-level API and changing the versioning

paradigm. It is possible to fully conceal the underlying functionality

(i.e. , developers won't have direct access to the API) and ensure a

certain freedom of  working with the API inside the SDK up to

seamlessly switching a major version. This approach for sure

provides API vendors with more control over how partners'

applications work. However, it requires investing more in developing

the SDK and, more importantly, properly designing the SDK so that

developers won't need to call the API directly due to the lack of  access

to some functionality or the inconvenience of  working with the SDK.

Moreover, the SDK itself  should be robust enough to be able to handle

the transition to a new major version of  the API.

To summarize the above, a properly designed SDK, apart from

maintaining consistency with the platform guidelines and providing

“syntactic sugar,” serves three important purposes:

Lowering the number of  mistakes in client code by implementing

helpers that cover unobvious and poorly formalizable aspects of

working with the API

Relieving client developers of  the duty to write code that is absolutely

irrelevant to the tasks they are solving

Giving an API vendor more control over integrations.



Code Generation

As we have seen, the list of  tasks that an SDK developer faces (if  they aim

to create a quality product, of  course) is quite considerable. Given that

every target platform requires a separate SDK, it is not surprising that

many API vendors seek to replace manual labor with automation.

One of  the most potent approaches to such automation is code generation.

It involves developing a technology that allows generating the SDK code in

the target programming language for the target platform based on the API

speci�cation. Many modern data interchange protocols (gRPC, for

instance) are shipped with generators of  such ready-to-use clients in

di�erent programming languages. For other technologies

(OpenAPI/Swagger, for instance) generators are being developed by the

community.

Code generation allows for solving trivial problems such as adapting code

style, (de)serializing complex types, etc. — in other words, resolving issues

that are bound to the speci�cs of  the platform, not the high-level business

logic. The SDK developers can relatively inexpensively complement this

machine “translation” with convenient helpers: realize automated

repeating idempotent requests (with some retry time management policy),

caching results, storing persistent data (such as authorization tokens) in

the system storage, etc.

Such a generated SDK is usually referred to as a “client to an API.” The

convenience of  usage and the functional capabilities of  code generation

are so formidable that many API vendors restrict themselves to this

technology, only providing their SDKs as generated clients.

However, for the aforementioned reasons, higher-level problems (such as

receiving callbacks, dealing with business logic-bound errors, etc.) cannot

be solved with code generation without writing some arbitrary code for

the speci�c API. In the case of  complex APIs with a non-trivial workcycle

it is highly desirable that an SDK also solves high-level problems.



Otherwise, an API vendor will end up with a bunch of  applications using

the API and making all the same “rookie mistakes.” This is, of  course, not a

reason to fully abolish code generation as it's quite convenient to use a

generated client as a basis for developing a high-level SDK.

Other Tooling

The word “Kit” in “So�ware Development Kit” implies that the technology

comes with auxiliary tools such as emulators  / simulators, sandboxes,

plugins for IDEs, etc. In this Section, we will not delve into this topic and

will discuss it in more detail in the “API Product” section.



Chapter 43. Problems of Introducing UI Components

Introducing UI components to an SDK brings an additional dimension to

an already complex setup comprising a low-level API and a client wrapper

on top of  it. Now both developers (who write the application) and end

users (who use the application) interact with your API. This might not

appear as a game changer at �rst glance; however, we assure you that it is.

Involving an end-user has signi�cant consequences from the API  / SDK

design point of  view as it requires much more careful and elaborate

program interfaces compared to a “pure” client-server API. Let us explain

this statement with a concrete example.

Imagine that we decided to provide a client SDK for our API that features

ready-to-use components for application developers. The functionality is

simple: the user enters a search phrase and observes the results in the

form of  a list.



The main screen of  an application with search results

The user can select an item and view the o�er details with available

actions.



O�er view panel

To implement this scenario, we provide an object-oriented API in the form

of, let's say, a class named SearchBox that realizes the aforementioned

functionality by utilizing the search method in our client-server API.



The Problems

At �rst glance, it might appear that this UI is a superstructure atop the

search method, which simply visualizes the results or in other words, a

graphical interface is a di�erent representation of  a program interface.

However, is it viable to claim that the UI we discussed in the previous

paragraph, with its buttons and modal panels (let alone animations) is just

a projection of  two methods, search and createOrder? We would rather

say that this statement is an overstretch. To build a �ne UI, we need to

intersect two planes:

The functionality of  the underlying API

The methods of  visualizing data and interacting with UI controls that

are conventional for the application platform (possibly, creatively

improved by our UX designers).

These two subject areas could be far away from each other. Furthermore,

the closer a UI is to representing the raw data, the less convenient it is

for the user (huge forms for entering �eld values as a classical example ).

If  we aim to make an interface ergonomic, we need to replace “forms” with

complex interfaces built atop both data and graphical primitives of  the

platform. Furthermore, these complex UI components will inevitably have

their own inner state. This eventually leads to piling up complexities in the

SDK architecture:

1. Coupling Heterogeneous Functionality in One Entity

We have placed two buttons (to make an order and to show the co�ee

shop's location) plus a cancel action onto the o�er view panel. These

buttons may look identical and they react to the user's actions in the same

way, but the way the SearchBox component handles pressing each of  them

is completely di�erent.

1



Imagine if  we allow developers to add their own action buttons onto the

panel, for which purpose we introduce a Button class. We will soon learn

that this functionality will be used to cover two diametrically opposite

scenarios:

Adding extra buttons to the panel, such as “Call the co�ee shop,”

while sharing the design with the standard ones

Changing the appearance of  the standard buttons to match the

partner's corporate design guidelines while preserving the functionality

intact.

Furthermore, a third scenario is possible: developers might want to create

a “Call” button that both looks di�erent and performs di�erent actions but

inherits the UX of  the standard button, such as animating button presses,

stacking with other buttons, etc.

From the developers' perspective, this means that the Button class should

allow rede�ning the appearance of  the button, the actions it performs, and

the UX elements — in other words, each of  these three subsystems might

be replaced with an alternative implementation so that the other two

subsystems continue working normally.

2. Shared Ownership of Resources

Imagine that we need to allow developers to programmatically create a

SearchBox with a speci�c query already entered. This functionality seems

reasonable as it would allow displaying a “�nd lungo nearby” banner in

the application, clicking on which would show a SearchBox with the pre-

entered “lungo” query. Developers will just need to open the corresponding

screen in the app and call a method that we are to design. Let's simply

name it search.

Two of  our search methods (the “pure” client-server one and the

component-bound SearchBox.search) accept the same parameters and

emit the same results. However, their behavior is totally di�erent:



If  requested several times, SearchBox.search must discard all server

responses except for the one corresponding to the latest request (even

if  it is not the one received last).

Additional question: What should SearchBox.search return if  it

is interrupted by another search? If  an error, then what was the

error of  the caller? If  a success, then why are the results not

displayed?

This leads to another problem: what should happen if

SearchBox.search was called when it was processing a request by an

end user? Which of  the callers is more important — a developer or a

user?

While implementing a client-server API, we don't typically face this issue.

Every actor calling a search function will receive the response

independently. With UI components this approach doesn't work as all the

components ultimately share one common resource: the screen of  the

application and the user's attention.

Any asynchronous operation in a UI component, especially if  it is visibly

indicated with animation or other continuous action, could disrupt other

visual operations, including cases when the disruption happened because

of  the user's actions.

3. Multiple Inheritance in Entity Hierarchies

Imagine that a developer decided to enhance the design of  the o�er list

with icons of  co�ee shop chains. If  the icon is set, it should be shown in

every place related to a speci�c co�ee shop's o�er.



Search results with a co�ee shop chain icon

Now let's also imagine that the developer additionally customized all

buttons in the SDK by adding action icons.



The o�er view panel with action icons

A question arises: if  an o�er of  the co�ee chain is shown in the panel,

which icon should be featured on the order creation button: the one

inherited from the o�er properties (the co�ee chain logo) or the one

inherited from the action type of  the button itsel�? The order creation

control element is incorporated into two entity hierarchies [visual one and



data-bound (semantic) one] and inherits from both equally.

It is very easy to demonstrate how coupling several subject areas in one

entity leads to highly sophisticated and unobvious logic. As the same

arguments are applicable to the “Show location” button as well, it is kind

of  obvious that specialized options should take precedence over general

ones. In our case, the type of  a button should have more priority than

some abstract “icon” data property.

But it is not the end of  the story. If  the developer still wants exactly this,

i.e. , to show a co�ee shop chain icon (if  any) on the order creation button,

then what should they do? Following the same logic, we should provide an

even more specialized possibility to do so. For example, we can adopt the

following logic: if  there is a createOrderButtonIconUrl property in the

data, the icon will be taken from this �eld. Developers could customize the

order creation button by overwriting this createOrderButtonIconUrl

�eld for every search result:

let searchBox = new SearchBox({
// For simplicity, let's allow
// to override the search function
searchFunction: function (params) {
let res = await api.search(params);

    res.forEach(function (item) {
        item.createOrderButtonIconUrl = 
          <the URL of the icon>;
    });
    return res;
  }
})

Formally speaking, this code is correct and does not violate any agreements.

However, the readability and maintainability of  this code are a

catastrophe. The last place the next developer asked to change the button

icon will look is the o�er search function.



This functionality would appear more maintainable if  no such

customization opportunity was provided at all. Developers will be

unhappy as they would need to implement their own search control from

scratch just to replace an icon, but this implementation would be at least

logical with icons de�ned somewhere in the rendering function.

NB: There are many other possibilities to allow developers to customize a

button nested deeply within a component, such as exposing dependency

injection or sub-component class factories, giving direct access to a

rendered view, allowing to provide custom button layouts, etc. All of  them

are inherently subject to the same problem: it is complicated to

consistently de�ne the order and the priority of  injections  / rendering

callbacks / custom layouts.

Consistently solving all the problems listed above is unfortunately a very

complex task. In the following chapters, we will discuss design patterns

that allow for splitting responsibility areas between the component's sub-

entities. However, it is important to understand one thing: full separation

of  concerns, meaning developing a functional SDK+UI that allows

developers to independently overwrite the look, business logic, and UX of

the components, is extremely expensive. In the best-case scenario, the

nomenclature of  entities will be tripled. So the universal advice is: think

thrice before exposing the functionality of customizing UI components. Though the

price of  design mistakes in UI library APIs is typically not very high

(customers rarely request a refund if  button press animation is broken), a

badly structured, unreadable and buggy SDK could hardly be viewed as a

competitive advantage of  your API.

References

Lepinsky, R. Google and Apple Versus Your Company’s Application

rodgersnotes.wordpress.com/2010/10/25/google-and-apple-versus-your-companys-application

1

https://rodgersnotes.wordpress.com/2010/10/25/google-and-apple-versus-your-companys-application/


Chapter 44. Decomposing UI Components

Let's transition to a more substantive conversation and try to understand

why the requirement to allow the replacement of  a component's

subsystems with alternative implementations leads to a dramatic increase

in interface complexity. We will continue studying the SearchBox

component from the previous chapter. Allow us to remind the reader of

the factors that complicate the design of  APIs for visual components:

Coupling heterogeneous functionality (such as business logic,

appearance styling, and behavior) into a single entity

Introducing shared resources, i.e. an object state that could be

simultaneously modi�ed by di�erent actors, including the end user

The emergence of  ambivalent hierarchies in the inheritance of  entity

properties and options.

Let's make the task more speci�c. Imagine that we need to develop a

SearchBox that allows for the following modi�cations:

�. Replacing the textual paragraphs representing an o�er with a map

with markers that could be highlighted:



Search results on a map

This illustrates the problem of  replacing a subcomponent (the

o�er list) while preserving the behavior and design of  other

parts of  the system as well as the complexity of  implementing

shared states.



�. Combining short and full descriptions of  an o�er in a single UI (a list

item could be expanded, and the order can be created in-place):

A list of  o�ers with short descriptions



A list of  o�ers with some of  them expanded

This illustrates the problem of  fully removing a subcomponent

and transferring its business logic to other parts of  the system.

�. Manipulating the data presented to the user and the available actions

for an o�er through adding new buttons, such as “Previous o�er,”

“Next o�er,” and “Make a call.”



An o�er panel with additional icons and buttons

In this scenario, we're evaluating di�erent chains of  propagating data

and options down to the o�er panel and building dynamic UIs on top

of  it:



Some data �elds (such as the logo and phone number) are

properties of  a real object received in the search API response.

Some data �elds make sense only in the context of  this speci�c

UI and re�ect its design principles (for instance, the “Previous”

and “Next” buttons).

Some data �elds (such as the icons of  the “Not now” and “Make a

call” buttons) are bound to the button type (i.e. , the business

logic it provides).

The obvious approach to tackling these scenarios appears to be creating

two additional subcomponents responsible for presenting a list of  o�ers

and the details of  the speci�c o�er. Let's name them OfferList and

OfferPanel respectively.

The subcomponents of  a `SearchBox`

If  we had no customization requirements, the pseudo-code implementing

interactions between all three components would look rather trivial:



class SearchBox implements ISearchBox {
// The responsibility of `SearchBox` is:
// 1. Creating a container for rendering
// an offer list, preparing option values
// and creating the `OfferList` instance
constructor(container, options) {

    …
this.offerList = new OfferList(
this,

      offerListContainer,
      offerListOptions
    );
  }
// 2. Triggering an offer search when 
// a user presses the corresponding button
// and providing an analogous programmable
// interface for developers
onSearchButtonClick() {
this.search(this.searchInput.value);

  }
search(query) {

    …
  }
// 3. Notifying about new search results
// being received from the server
onSearchResultsReceived(searchResults) {

    …
this.offerList.setOfferList(searchResults)

  }
// 4. Creating orders (and manipulating 
// subcomponents if needed)
createOrder(offer) {
this.offerList.destroy();

    ourCoffeeSdk.createOrder(offer);
    …
  }
// 5. Self-destructing if requested
destroy() {
this.offerList.destroy();

    …
  }
}



class OfferList implements IOfferList {
// The responsibility of `OfferList` is:
// 1. Creating a container for rendering
// an offer panel, preparing option values
// and creating the `OfferPanel` instance
constructor(searchBox, container, options) {

    …
this.offerPanel = new OfferPanel(

      searchBox,
      offerPanelContainer,
      offerPanelOptions
    );
    …
  }
// 2. Providing a method to change the list
// of offers to be presented
setOfferList(offerList) { … }
// 3. When an offer is selected, opening
// an offer panel to present it
onOfferClick(offer) {
this.offerPanel.show(offer)

  }
// 4. Self-destructing if requested
destroy() {
this.offerPanel.destroy();

    …
  }
}



class OfferPanel implements IOfferPanel {
constructor(

    searchBox, container, options
) { … }
// The responsibility of `OfferPanel` is:
// 1. Presenting an offer
show(offer) { 
this.offer = offer;

    …
  }
// 2. Creating an order when the user
// presses the “Place an order” button
onCreateOrderButtonClick() {
this.searchBox.createOrder(this.offer);

  }
// 3. Closing itself when the user
// presses the “Not now” button
onCancelButtonClick() {
// …

  }
// 4. Self-destructing if requested
destroy() { … }

}

The ISearchBox / IOfferPanel / IOfferView interfaces are concise as well

(constructors and destructors omitted):

interface ISearchBox {
search(query);
createOrder(offer);

}
interface IOfferList {
setOfferList(offerList);

}
interface IOfferPanel {
show(offer);

}

If  we aren't making an SDK and have not had the task of  making these

components customizable, the approach would be perfectly viable.

However, let's discuss how we would solve the three sample tasks

described above.



�. Displaying an o�er list on the map: at �rst glance, we can develop an

alternative component for displaying o�ers that implements the

IOfferList interface (let's call it OfferMap) and reuses the standard

o�er panel. However, we have a problem: OfferList only sends

commands to OfferPanel while OfferMap also needs to receive

feedback — an event of  panel closure to deselect a marker. The API of

our components does not encompass this functionality, and

implementing it is not that simple:

class CustomOfferPanel extends OfferPanel {
constructor(

    searchBox, offerMap, container, options
) {
super(searchBox, container, options);
this.offerMap = offerMap;

  }
onCancelButtonClick() {
offerMap.resetCurrentOffer();
super.onCancelButtonClick();

  }
}
class OfferMap implements IOfferList {
constructor(searchBox, container, options) {

    …
this.offerPanel = new CustomOfferPanel(
this,

      searchBox,
      offerPanelContainer,
      offerPanelOptions
    )
  }
resetCurrentOffer() { … }

  …
}

We have to create a CustomOfferPanel class, and this

implementation, unlike its parent class, now only works with

OfferMap, not with any IOfferList-compatible component.



�. The case of  making full o�er details and action controls in place in

the o�er list is pretty obvious: we can achieve this only by writing a

new IOfferList-compatible component from scratch because

whatever overrides we apply to the standard OfferList, it will

continue creating an OfferPanel and open it upon o�er selection.

�. To implement new buttons, we can only propose to developers to

create a custom o�er list component (to provide methods for

selecting previous and next o�ers) and a custom o�er panel that will

call these methods. If  we �nd a simple solution for customizing, let's

say, the “Place an order” button text, this solution needs to be

supported in the OfferList code:

let searchBox = new SearchBox(…, {
offerPanelCreateOrderButtonText:
'Drink overpriced coffee!'

});

class OfferList {
constructor(…, options) {

    …
// It is `OfferList`'s responsibility
// to isolate the injection point and
// to propagate the overridden value
// to the `OfferPanel` instance
this.offerPanel = new OfferPanel(…, {
createOrderButtonText: options

        .offerPanelCreateOrderButtonText
      …
    })
  }
}

The solutions we discuss are also poorly extendable. For example, in #1, if

we decide to make the o�er list react to the closing of  an o�er panel as a

part of  the standard interface for developers to use, we will need to add a

new method to the IOfferList interface and make it optional to maintain

backward compatibility:



interface IOfferList {
  …
  onOfferPanelClose?();
}

In the OfferPanel code, the support of  this new method will look like:

if (Type(this.offerList.onOfferPanelClose)
  == 'function') {

this.offerList.onOfferPanelClose();
  }

Certainly, this will not make our code any cleaner. Additionally, OfferList

and OfferPanel will become even more tightly coupled.

As we discussed in the “Weak Coupling” chapter, to solve such problems

we need to reduce the strong coupling of  the components in favor of  weak

coupling, for example, by generating events instead of  calling methods

directly. An IOfferPanel could have emitted a 'close' event, so that an

OfferList could have listened to it:

class OfferList {
setup() {

    …
this.offerPanel.events.on(
'close',
function () {
this.resetCurrentOffer();

      }
    )
  }
  …
}

This code looks more sensible but doesn't eliminate the mutual

dependencies of  the components: an OfferList still cannot be used

without an OfferPanel as required in Case #2.



Let us note that all the code samples above are a full chaos of  abstraction

levels: an OfferList instantiates an OfferPanel and manages it directly,

and an OfferPanel has to jump over levels to create an order. We can try to

unlink them if  we route all calls through the SearchBox itself, for example,

like this:

class SearchBox() {
constructor() {
this.offerList = new OfferList(…);
this.offerPanel = new OfferPanel(…);
this.offerList.events.on(
'offerSelect', function (offer) {
this.offerPanel.show(offer);

      }
    );

this.offerPanel.events.on(
'close', function () {
this.offerList

          .resetSelectedOffer();
      }
    );
  }
}

Now OfferList and OfferPanel are independent, but we have another

issue: to replace them with alternative implementations we have to change

the SearchBox itself. We can go even further and make it like this:

class SearchBox {
constructor() {

    …
this.offerList.events.on(
'offerSelect', function (event) {
this.events.emit('offerSelect', {
offer: event.selectedOffer

        });
      }
    );
  }
  …
}



So a SearchBox just translates events, maybe with some data alterations.

We can even force the SearchBox to transmit any events of  child

components, which will allow us to extend the functionality by adding new

events. However, this is de�nitely not the responsibility of  a high-level

component, being mostly a proxy for translating events. Also, using these

event chains is error prone. For example, how should the functionality of

selecting a next o�er in the o�er panel (Case #3) be implemented? We

need an OfferList to both generate an 'offerSelect' event and react

when the parent context emits it. One can easily create an in�nite loop of

it:

class OfferList {
constructor(searchBox, …) {

    …
    searchBox.events.on(

'offerSelect',
this.selectOffer

    );
  }

selectOffer(offer) {
    …

this.events.emit(
'offerSelect', offer

    );
  }
}

class SearchBox {
constructor() {

    …
this.offerList.events.on(
'offerSelect', function (offer) {

        …
this.events.emit(
'offerSelect', offer

        );
      }
    );
  }
}

To avoid in�nite loops, we could split the events:



class SearchBox {
constructor() {

    …
// An `OfferList` notifies about 
// low-level events, while a `SearchBox`,
// about high-level ones
this.offerList.events.on(
'click', function (target) {

        …
this.events.emit(
'offerSelect',

          target.dataset.offer
        );
      }
    );
  }
}

Then the code will become ultimately unmaintainable: to open an

OfferPanel, developers will need to generate a 'click' event on an

OfferList instance.

In the end, we have already examined �ve di�erent options for

decomposing a UI component employing very di�erent approaches, but

found no acceptable solution. Obviously, we can conclude that the problem

is not about speci�c interfaces. What is it about, then?

Let us formulate what the responsibility of  each of  the components is:

�. SearchBox presents the general interface. It is an entry point both for

users and developers. If  we ask ourselves what a maximum abstract

component still constitutes a SearchBox, the response will obviously

be “the one that allows for entering a search phrase and presenting

the results in the UI with the ability to place an order.”

�. OfferList serves the purpose of  showing o�ers to users. The user can

interact with a list — iterate over o�ers and “activate” them (i.e. ,

perform some actions on a list item).



�. OfferPanel displays a speci�c o�er and renders all the information

that is meaningful for the user. There is always exactly one

OfferPanel. The user can work with the panel, performing actions

related to this speci�c o�er (including placing an order).

Does the SearchBox description entail the necessity of  OfferList's

existence? Obviously, not: we can imagine quite di�erent variants of  UI for

presenting o�ers to the users. An OfferList is a speci�c case of  organizing

the SearchBox's functionality for presenting search results. Conversely,

the idea of  “selecting an o�er” and the concepts of  OfferList and

OfferPanel performing di�erent actions and having di�erent options are

equally inconsequential to the SearchBox de�nition. At the SearchBox

level, it doesn't matter how the search results are presented and what states

the corresponding UI could have.

This leads to a simple conclusion: we cannot decompose SearchBox just

because we lack a su�cient number of  abstraction levels and try to jump

over them. We need a “bridge” between an abstract SearchBox that does

not depend on speci�c UI and the OfferList  / OfferPanel components

that present a speci�c case of  such a UI. Let us arti�cially introduce an

additional abstraction level (let us call it a “Composer”) to control the data

�ow:



class SearchBoxComposer
implements ISearchBoxComposer {
// The responsibility of a “Composer” comprises:
// 1. Creating a context for nested subcomponents
constructor(searchBox, container, options) {

    …
// The context consists of the list of offers 
// and the current selected offer
// (both could be empty)
this.offerList = null;
this.currentOffer = null;
// 2. Creating subcomponents and translating
// their options
this.offerList = this.buildOfferList();
this.offerPanel = this.buildOfferPanel();
// 3. Managing own state and notifying
// about state changes
this.searchBox.events.on(
'offerListChange', this.onOfferListChange

    );
// 4. Listening
this.offerListComponent.events.on(
'offerSelect', this.selectOffer

    );
this.offerPanelComponent.events.on(
'action', this.performAction

    );
  }
}

The builder methods to create subcomponents, manage their options and

potentially their position on the screen would look like this:



class SearchBoxComposer {
  …

buildOfferList() {
return new OfferList(
this,
this.offerListContainer,
this.generateOfferListOptions()

    );
  }

buildOfferPanel() {
return new OfferPanel(
this,
this.offerPanelContainer,
this.generateOfferPanelOptions()

    );
  }
}

We can put the burden of  translating contexts on SearchBoxComposer. In

particular, the following tasks could be handled by the composer:

�. Preparing and translating the data. At this level we can stipulate that

an OfferList shows short information (a “preview”) about the o�er,

while an OfferPanel presents full information, and provide

potentially overridable methods of  generating the required data

facets:



class SearchBoxComposer {
  …
onContextOfferListChange(offerList) {

    …
// A `SearchBoxComposer` translates
// an `offerListChange` event as 
// an `offerPreviewListChange` for the
// `OfferList` subcomponent, thus preventing
// an infinite loop in the code, and prepares
// the data
this.events.emit('offerPreviewListChange', {
offerList: this.generateOfferPreviews(
this.offerList,
this.contextOptions

      )
    });
  }
}

�. Managing the composer's own state (the currentOffer �eld in our

case):

class SearchBoxComposer {
  …
onContextOfferListChange(offerList) {
// If an offer is shown when the user
// enters a new search phrase, 
// it should be hidden
if (this.currentOffer !== null) {
this.currentOffer = null;
// This is an event specifically
// for the `OfferPanel` to listen to
this.events.emit(
'offerFullViewToggle', 

        { offer: null }
      );
    }
    …
  }
}

�. Transforming user's actions on a subcomponent into events or

actions on the other components or the parent context:



class SearchBoxComposer {
  …
public performAction({

    action, offerId
  }) {

switch (action) {
case 'createOrder':
// The “place an order” action is
// to be handled by the `SearchBox`
this.createOrder(offerId);
break;

case 'close':
// The closing of the offer panel 
// event is to be exposed publicly
if (this.currentOffer != null) {
this.currentOffer = null;
this.events.emit(
'offerFullViewToggle', 

            { offer: null }
          );
        }

break;
      …
    }
  }
}

If  we revisit the cases we began this chapter with, we can now outline

solutions for each of  them:

�. Presenting search results on a map doesn't change the concept of  the

list-and-panel UI. We need to implement a custom IOfferList and

override the buildOfferList method in the composer.

�. Combining the list and the panel functionality contradicts the UI

concept, so we will need to create a custom ISearchBoxComposer.

However, we can reuse the standard OfferList as the composer

manages both the data for it and the reactions to the user's actions.

�. Enriching the data is compatible with the UI concept, so we continue

using standard components. What we need is overriding the

functionality of  preparing OfferPanel's data and options, and

implementing additional events and actions for the composer to

translate.



The price of  this �exibility is the overwhelming complexity of  component

communications. Each event and data �eld must be propagated through

the chains of  such “composers” that elongate the abstraction hierarchy.

Every transformation in this chain (for example, generating options for

subcomponents or reacting to context events) is to be implemented in an

extendable and parametrizable way. We can only o�er reasonable helpers

to ease using such customization. However, in the SDK code, the

complexity will always be present. This is the way.

The reference implementation of  all the components with the interfaces

we discussed and all three customization cases can be found in this book's

repository:

The source code is available on www.github.com/twirl/The-API-

Book/docs/examples

There are also additional tasks for self-study

The sandbox with “live” examples is available on twirl.github.io/The-

API-Book.

https://github.com/twirl/The-API-Book/tree/gh-pages/docs/examples/01.%20Decomposing%20UI%20Components
https://github.com/twirl/The-API-Book/tree/gh-pages/docs/examples/01.%20Decomposing%20UI%20Components
https://twirl.github.io/The-API-Book/examples/01.%20Decomposing%20UI%20Components/
https://twirl.github.io/The-API-Book/examples/01.%20Decomposing%20UI%20Components/


Chapter 45. The MV* Frameworks

One obvious approach to reducing the complexity of  implementing the

multi-layered component hierarchies we described in the previous chapter

is to restrict possible interaction directions. As we described in the “Weak

Coupling” chapter, we could simplify the implementation if  we allow

subcomponents to call the parent context's methods directly:

class SearchBoxComposer
implements ISearchBoxComposer {

  …
protected context: ISearchBox;

  …
public createOrder(offerId: string) {
const offer = this.findOfferById(offerId);
if (offer !== null) {
// Instead of generating an event
// this.events.emit(
//   'createOrder', { offer });
this.context

       .createOrder(offer);
    }
  }
}

Additionally, we may relieve Composer of  data preparation duty and allow

subcomponents to retrieve the data �elds they need from SearchBox

directly:



class OfferListComponent
implements IOfferListComponent {

  …
protected context: SearchBox;

  …
constructor () {

    …
// The offer list component
// takes data from `SearchBox`
// and listens to state changes
this.context.events.on(
'offerListChange',
() => {
this.show(
this.context.getOfferList()

        );
      }
    );
  }
  …
}

As we lose the ability to prepare data for subcomponents, we can no longer

attach subcomponents to di�erent parents through implementing a

custom Composer. However, we can still replace them with alternative

implementations, as the reactions to user's actions are still controlled by

Composer. As a bonus, we now don't have two-way interactions between

our entities:

Subcomponents read SearchBox's state but never modify it.

Composer gets noti�ed about the user's interaction with the UI but

doesn't interfere

Finally, SearchBox doesn't interact with either of  them and only

provides a context, methods to change it, and the corresponding

noti�cations.



By making these reductions, in fact, we end up with a setup that follows

the “Model-View-Controller” (MVC) methodology. This is one of  the very

�rst patterns for designing user interfaces proposed as early as 1979 by

Trygve Reenskaug. OfferList and OfferPanel (also, the code that

displays the input �eld) constitute a view that the user observes and

interacts with. Composer is a controller that listens to the view's events and

modi�es a model (SearchBox itsel�).

NB: to follow the letter of  the paradigm, we must separate the model, which

will be responsible only for the data, from SearchBox itself. We leave this

exercise to the reader.

MVC entities interaction chart

If  we choose other options for reducing interaction directions, we will get

other MV* frameworks (such as Model-View-Viewmodel, Model-View-

Presenter, etc.). All of  them are ultimately based on the “Model” pattern.

1·2



The “Model” Pattern

The common denominator of  all MV* frameworks is the requirement for

the “model” entity to fully deterministically de�ne the look and state of  a UI

component. Changes in a model beget changes in views (or the hierarchy

of  views as in some approaches a model could be global and de�ne the

look of  the entire application). Meanwhile, visual components cannot

a�ect the model directly as they only interact with controllers.

SDKs that implement one of  the MV* paradigms theoretically gain

important advantages:

Mandatory separation of  data domains as it is prescribed (though not

necessarily followed, see below) that a model contains sematic high-level

data.

The event loop cycles are almost impossible since controllers should

only react to the user's or developer's interaction with views, not

model changes.

Additionally, model state change events are usually generated if

and only if  the state really changed (i.e. , the new �eld value

di�ers from the current one). To make a loop, the system needs

to in�nitely oscillate between two distinct states which is rather

unlikely to happen accidentally.

Controllers translate low-level events (user's actions in the UI) into

high-level ones thus providing su�cient abstraction to allow

changing the underlying UI while preserving business logic.

As the model data fully de�nes the system state, it is very convenient

for implementing such complex functionality as restoring a�er a

crash, collaborative editing, undoing the last changes, etc.



One of  the use cases to utilize this property is serializing a

model in the form of  a URL (or an App Link in the case of  mobile

applications). Then the URL fully de�nes the application state,

and all state changes are re�ected as URL changes. This comes in

handy as it allows generating links that open any speci�c screen

in the application.

In conclusion, MV* frameworks establish a rigid pattern that helps in

writing quality code and e�ectively controlling data �ows.

This rigidity, however, bears disadvantages as well. If  we try to fully de�ne

the component's state, we must include such technicalities as, let's say, all

animations being executed (and even the current percentages of

execution). Therefore, a model will include all data of  all abstraction levels

for both hierarchies (semantic and visual) and also the calculated option

values. In our example, this means that the model will store, for example,

the currentSelectedOffer �eld for OfferPanel to use, the list of  buttons

in the panel, and even the calculated icon URLs for those buttons.

Such a full model poses a problem not only semantically and theoretically

(as it mixes up heterogeneous data in one entity) but also very practically.

Serializing such models will be bound to a speci�c API or application

version (as they store all the technical �elds, including those not exposed

publicly in the API). Changing subcomponent implementation will result

in breaking backward compatibility as old links and cached state will be

unrestorable (or we will have to maintain a compatibility level to interpret

serialized models from past versions).

Another ideological problem is organizing nested controllers. If  there are

subordinate subcomponents in the system, all the problems that an MV*

approach solved return at a higher level: we have to allow nested

controllers either to modify a global model or to call parent controllers.

Both solutions imply strong coupling and require exquisite interface

design skill; otherwise reusing components will be very hard.



If  we take a closer look at modern UI libraries that claim to employ MV*

paradigms, we will learn they employ it quite loosely. Usually, only the

main principle that a model de�nes UI and can only be modi�ed through

controllers is adopted. Nested components usually have their own models

(in most cases, comprising a subset of  the parent model enriched with the

component's own state), and the global model contains only a limited

number of  �elds. This approach is implemented in many modern UI

frameworks, including those that claim they have nothing to do with MV*

paradigms (React, for instance ).

All these problems of  the MVC paradigm were highlighted by Martin

Fowler in his “GUI Architectures” essay.  The proposed solution is the

“Model-View-Presenter” framework, in which the controller entity is

replaced with a presenter. The responsibility of  the presenter is not only

translating events, but preparing data for views as well. This allows for full

separation of  abstraction levels (a model now stores only semantic data

while a presenter transforms it into low-level parameters that de�ne UI

look; the set of  these parameters is called the “Application Model” or

“Presentation Model” in Fowler's text).

3·4

5



MVP entities interaction chart

Fowler's paradigm closely resembles the Composer concept we discussed in

the previous chapter with one notable deviation. In MVP, a presenter is

stateless (with possible exceptions of  caches and closures) and it only

deduces the data needed by views from the model data. If  some low-level

property needs to be manipulated, such as text color, the model needs to be

extended in a manner that allows the presenter to calculate text color

based on some high-level model data �eld. This concept signi�cantly

narrows the capability to replace subcomponents with alternate

implementations.



NB: let us clarify that the author of  this book is not proposing Composer as

an alternative MV* methodology. The message in the previous chapter is

that complex scenarios of  decomposing UI components are only solved

with arti�cially-introduced “bridges” of  additional abstraction layers.

How this bridge is called and what rules it brings are not as important.

References

MVC

en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Reenskaug, T. (1979) MVC

folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html

Why did we build React?

legacy.reactjs.org/blog/2013/06/05/why-react.html

Mattiazzi, R. How React and Redux brought back MVC and everyone

loved it

rangle.io/blog/how-react-and-redux-brought-back-mvc-and-everyone-loved-it

Fowler, M. (2006), GUI Architectures

1

2

3

4

5

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html
https://legacy.reactjs.org/blog/2013/06/05/why-react.html
https://rangle.io/blog/how-react-and-redux-brought-back-mvc-and-everyone-loved-it


Chapter 46. The Backend-Driven UI

Another method of  reducing the complexity of  building “bridges” that

connect di�erent subject areas in one component is to eliminate one of

them. For instance, business logic could be removed: components might be

entirely abstract, and the translation of  UI events into useful actions

hidden beyond the developer's control.

In this paradigm, the o�er search code would look like this:

class SearchBox {
  …
search(query) {
const markup = await api.search(query);
this.render(markup);

  }
  …
}

Instead of  receiving machine-readable search results, SearchBox gets a

ready-to-use representation in the form of  HTML code or other

declarative markup (possibly developed speci�cally for the SDK).

This approach could be abstracted even further:

class SearchBox {
constructor (…) {…}

stateChange (patch) {
// `SearchBox` receives a list
// of actions to perform in response
// to any state change
let actions = await api

      .getActions(
this.model,

        patch
      );

// Performing the actions
    …
  }
}



In this code sample, it is implied that SearchBox doesn't contain any logic

at all except for sending events that happened to it (i.e. , the user's or the

developer's action) and displaying the content sent by the server.

(So-called “Web 1.0” is a �ne example of  this approach: the server always

sends full ready-to-use page content, and the interactivity is limited to

traversing hyperlinks.)

The backend-driven UI approach has obvious problems as it requires a fast

and stable connection to the server. However, it is still appealing to

developers because of  two advantages:

The ability to fully determine clients' behavior, including �xing

mistakes in business logic in real-time without the necessity to

publish new application versions.

The ability to skip developing consistent and readable SDK entities

nomenclature by providing a very limited set of  functionality.

Nevertheless, we cannot help but state the fact that despite all big IT

companies passing the stage of  developing backend-driven UIs (aka “thin

clients”) for their applications and public SDKs, we cannot name a single

notable product developed in this paradigm (except for protocols for

remote terminals), although in many cases the arising latencies could be

ignored. We would take the liberty to say that this situation has developed

because of  the following reasons:

Developing server-side code for controlling a UI is never easier than

the client one.

Modern client devices provide a broad range of  functionality only a

client code has access to, from caches to animations.



Writing hybrid code that partially receives the state from the

server and enriches it with client-only functionality is more

complex than writing pure client code (as in the backend-driven

UI approach, the response of  the server is a “black box,”

interacting with which requires inventing additional protocols).

Not writing hybrid code means, �rstly, reducing the capabilities

of  applications, and secondly, actually using a device in a “cloud

gaming” mode, which is quite expensive and not very convenient

to the user as of  today.

Currently, developing backend and frontend code are two di�erent

specializations requiring di�erent expertise and approaches to

writing code.

NB: the backend-driven UI should not be confused with server-side

rendering (SSR). The latter implies that a speci�c UI state (in the form of

HTML markup or similar declarative description) could be generated both

by the server and the client. The di�erence is that in SSR, clients are

typically able to parse the response of  the server and extract semantic

data.

From the perspective of  providing SDKs to external developers, the

backend-driven UI approach forces writing hybrid code (as the practice of

allowing partners to inject their code in the server rendering functions

seems non-viable as of  today) and therefore su�ers from the non-

transparency problem as developers won't be able to determine the state

of  the visual component. Ironically, this impairment is at the same time an

advantage as the API vendor retains the possibility of  manipulating the

component's content without breaking backward compatibility (we will

discuss this in more detail in the “API Services Lineup”). There are many

public APIs in the world that operate in this paradigm (starting with

advertisement networks inlets, various widgets, etc.), although we

wouldn't call them fully-�edged SDKs.



Chapter 47. Shared Resources and Asynchronous Locks

Another important pattern we need to discuss is accessing shared

resources. Imagine that in our study application, opening an o�er panel

required making an additional request to the server and thus became

asynchronous. Let's modify the OfferPanelComponent code:

class OfferPanelComponent {
  …
show (offer) {
let fullData = await api

      .getFullOfferData(offer);
    …
  }
}

A question arises: what should happen if  the user or the developers tries to

select another offerId while the server response for the previous one

hasn't been received yet? Obviously, we must choose which of  the two

openings needs to be suppressed. Let's say we decided to block the

interface during the data load and by doing so, prohibit selecting another

o�er. To implement this functionality, we need to notify parent

components about data requests being initiated or ful�lled:

class OfferPanelComponent {
  …
show () {
this.events.emit('beginDataLoad');
let fullData = await api

      .getFullOfferData(offer);
this.events.emit('endDataLoad');

    …
  }
}



// `Composer` listens to the panel events
// and sets the value of the
// corresponding flag
class SearchBoxComposer {
  …
constructor () {

    …
this.offerPanel.events.on(
'beginDataLoad', () => {
this.isDataLoading = true;

      }
    );

this.offerPanel.events.on(
'endDataLoad', () => {
this.isDataLoading = false;

      }
    );
  }

selectOffer (offer) {
if (this.isDataLoading) {
return;

    }
    …
  }
}

However, this code is �awed for several reasons:

There is no obvious way to modify it if  di�erent types of  data loads

occur, and some of  them require blocking the UI while others do not.

It is poorly readable because it is rather di�cult to comprehend why

data load events on one component a�ect the user-facing

functionality of  the other component.

If  an exception is thrown while loading the data, the endDataLoad

event will never happen and the interface will remain blocked

inde�nitely.

If  you have read the previous chapters thoroughly, the solution to these

problems should be obvious. We need to abstract from the fact of  loading

data and reformulate the issue in high-level terms. We have a shared

resource: the space on the screen. Only one o�er can be displayed at a

time. This means that every actor needing lasting access to the panel must

explicitly obtain it. This entails two conclusions:



The access �ag must have an explicit name, such as

offerFullViewLocked, and not isDataLoading.

Composer must control this �ag, not the o�er panel itself

(additionally, because preparing data for displaying in the panel is

Composer's responsibility).

class SearchBoxComposer {
constructor () {

    …
this.offerFullViewLocked = false;

  }
  …
selectOffer (offer) {
if (this.offerFullViewLocked) {
return;

    }
this.offerFullViewLocked = true;
let fullData = await api

      .getFullOfferData(offer);
this.events.emit(
'offerFullViewChange',
this.generateOfferFullView(fullData)

    );
this.offerFullViewLocked = false;

  }
}

This approach improves readability but doesn't help with parallel access

and error recovery. To address these issues, we must take the next step: not

just create a �ag but introduce a procedure for capturing it (quite classically,

similar to managing exclusive access to shared resources in system

programming):



class SearchBoxComposer {
  …
selectOffer (offer) {
let lock;
try {
// Trying to capture the
// `offerFullView` resource

      lock = await this.acquireLock(
'offerFullView', '10s'

      );
let fullData = await api

        .getFullOfferData(offer);
this.events.emit(
'offerFullViewChange',
this.generateOfferFullView(fullData)

      );
      lock.release();
    } catch (e) {

// If we were unable to get access
return;

    } finally {
// Don't forget to free the resource
// in the case of an exception
if (lock) {

        lock.release();
      }
    }
  }
}

NB: the second argument to the acquireLock function is the lock's lifespan

(10 seconds, in our case). This implies that the lock will be automatically

released a�er this timeout has passed (which is useful in case we have

forgotten to catch an exception or set a timeout for a data load request),

thus unblocking the UI.

With this approach, we can implement not only locks, but also various

scenarios to �exibly manage them. Let's add data regarding the acquirer in

the lock function:



lock = await this.acquireLock(
'offerFullView', '10s', {
// Who is trying to acquire a lock
// and for what reason
reason: 'userSelectOffer',

    offer
  }
);

Then the current lock holder (or a lock dispatcher, if  we implement it)

could either relinquish control over the resource or prevent interception

depending on the situation. For example, if  opening the panel is initiated

by the developer by calling an API method (rather than a user selecting

another o�er from the list), we could prioritize it and grant it the right to

seize control:

lock.events.on('tryAcquire', (actor) => {
if (sender.reason == 'apiSelectOffer') {

    lock.release();
  } else {

// Otherwise, prevent interception
// of the lock
return false;

  }
});

Additionally, we might add a handler to react to losing control — for

example, to cancel the request for data if  it is no longer needed:

lock.events.on('lost', () => {
this.cancelFullOfferDataLoad();

});

The shared resource access control partner aligns well with the “model”

pattern: actors can acquire read and/or write locks for speci�c data �elds

(or groups of  �elds) of  the model.

NB: we could have addressed the data load problem di�erently:

Open the o�er panel



Display a spinner or a placeholder instead of  the real data

Asynchronously update the view once the data is loaded.

However, this doesn't change the problem de�nition: we still need a

con�ict resolution policy if  another actor attempts to open the panel while

the data is still loading, and for this we need shared resources and

mechanisms for gaining exclusive access to them.

Regrettably, in modern frontend development, such techniques involving

taking control over UI elements while data is loading or animations are

being performed are rarely used. Such asynchronous operations are

considered fast enough to not be concerned about access collisions.

However, if  latencies are high (e.g. , complex or multi-staged requests or

animations occur), neglecting access management could be a major UX

problem.



Chapter 48. Computed Properties

Let's revisit one of  the problems we outlined in the “Problems of

Introducing UI Components” chapter: the existence of  multiple

inheritance lines complicates customizing UI components as it implies

that component properties could be inherited from any such line.

For example, imagine we have a button that can borrow its iconUrl

property from two sources — from data [in our case, from o�er data

originated in the o�er search results] and the component's options:

class Button {
static DEFAULT_OPTIONS = {

    …
iconUrl: <default icon>

  }

  constructor (data, options) {
    this.data = data;
    // Overriding default options 
    // with custom values
    this.options = extend(
      Button.DEFAULT_OPTIONS,
      options
    )
  }

  render() {
    …
    this.iconElement.src = 
      this.data.iconUrl || 
      this.options.iconUrl
  }
}

It is also plausible to suggest that the iconUrl property in both hierarchies

is inherited from some parent entities:

The default option values could be de�ned in the base class which

Button extends.



The data for the button could be hierarchical (for example, if  we

decide to group o�ers in the same co�ee shop chain, and the icon is to

be taken from the parent group).

To facilitate customizing the visual style of  the components, we could

allow overriding icons in all SDK buttons.

In this situation, a question of  priorities arises: if  a property is de�ned in

several hierarchies (let's say, in the o�er data and in the default options),

how should the priorities be set to select one of  them?

The straightforward approach to tackling this issue is to prohibit any

inheritance and force developers to explicitly set the properties they need.

In our example, it would mean that developers will need to write

something like this:

const button = new Button(data);
if (data.createOrderButtonIconUrl) {
  button.view.iconUrl = 
    data.createOrderButtonIconUrl;
} else if (data.parentCategory.iconUrl) {
  button.view.iconUrl = 
    data.parentCategory.iconUrl;
}

The main advantage of  this approach is obvious: developers implement

the logic they need themselves. The disadvantages are also apparent: �rst,

developers will need to write excessive and o�en copy-pasted code

(“boilerplate”); second, they will soon become confused about which rules

are in place and why.

A slightly more complex solution is allowing inheritance but rigidly �xing

priorities (let's say the value set in the component's options always takes

precedence over the one set in the data, and they both are more important

than any inherited value). However, for any complex API, the result will be

the same: if  developers need a di�erent order of  resolving priorities, they

will write code similar to the one above.



An alternative approach is to expose the possibility of  de�ning rules for

how exactly the icon is resolved for a speci�c button, either declaratively

or imperatively:

// The declarative approach: the rules
// described in some data format
{
"button.checkout.iconUrl": "@data.iconUrl"

}

// The imperative approach: the value
// is calculated by the provided function
api.options.addRule(
'button.checkout.iconUrl',
(data, options) => data.iconUrl

);

The most coherent implementation of  this approach is the CSS

technology.  We are not actually proposing using a full CSS rule engine in

component libraries (because of  its overwhelming complexity and

excessiveness for most cases), but we are cautiously drawing the reader's

attention to the fact that supporting some subset of  CSS-like rules could

signi�cantly simplify the task of  customizing UI components.

Calculated Values

It is important not only to provide a mechanism for setting rules to

determine how values are resolved but also to allow obtaining the value that

was actually used. To achieve this, we need to distinguish between the

concept of  a set value and a computed value:

// Set a value as a percentage
button.view.width = '100%';
// Retrieve the actual applied value
// in pixels
button.view.computedStyle.width;

1



It is also a good practice to provide an event for changes in the computed

value of  such a calculated property.

References

CSS

www.w3.org/Style/CSS

1

https://www.w3.org/Style/CSS/


Chapter 49. Conclusion

In the previous eight chapters, we aimed to convey two important

observations:

Developing a high-quality UI library is a very complex engineering

task.

This task cannot be mechanically reduced to auto-generating SDKs

based on a speci�cation or data model.

Looking back at what was written, we cannot con�dently claim that we

found the best examples and the clearest wording for such a complex

subject area. However, we hope that we have helped make the reader's life

and the lives of  their users a bit easier.



SECTION VI. THE API PRODUCT

Chapter 50. The API as a Product

There are two important statements regarding APIs viewed as products.

�. APIs are proper products, just like any other kind of  so�ware. You are

“selling” them in the same manner, and all the principles of  product

management are fully applicable to them. It is quite doubtful that you

would be able to develop APIs well unless you conduct proper market

research, learn customers' needs, and study competitors, supply, and

demand.

�. However, APIs are quite special products. You are selling the possibility

to perform some actions programmatically by writing code, and this

fact puts some restrictions on product management.

To properly develop the API product, you must be able to answer this

question precisely: why would your customers prefer to perform those

actions programmatically? It is not an idle question: based on this book's

author's experience, the lack of  expertise by product owners in working

with APIs is exactly the biggest problem in API product development.

End users interact with your API indirectly, through applications built

upon it by so�ware engineers acting on behalf  of  some company (and

sometimes there is more than one engineer in between you and an end

user). From this perspective, the API's target audience resembles a

Maslow-like pyramid:

Users constitute the base of  the pyramid; they seek the ful�llment of

their needs and do not think about technicalities.

Business owners form the middle level; they match users' needs

against technical capabilities declared by developers and build

products.



Developers make up the apex of  the pyramid; it is developers who

work with APIs directly, and they decide which of  the competing

APIs to choose.

The obvious conclusion of  this model is that you must advertise the

advantages of  your API to developers. They will select the technology, and

business owners will translate the concept to end users. If  former or acting

developers manage the API product, they o�en tend to evaluate the API's

market competitiveness in this dimension only and mainly focus the

product promotion e�orts on the developer audience.

“Stop!” the mindful reader must yell at this moment. “The actual order of

things is exactly the opposite!”

Developers are typically a hired workforce implementing the tasks

set by business owners (and even if  a developer implements their

own project, they still choose an API that best �ts the project, thus

being employers of  themselves).

Business leaders do not set tasks based on their sense of  style or code

elegance; they need certain functionality to be implemented —

functionality that solves their customers' problems.

Finally, customers do not concern themselves with the technical

aspects of  the solution; they choose the product they need and

request speci�c functionality to be implemented.

So it turns out that customers are at the apex of  the pyramid: it is

customers whom you need to convince that they need not just any cup of

co�ee, but a cup of  co�ee brewed using our API (an interesting question

arises: how will we convey the knowledge of  which API works under the

hood and why customers should pay for it!); then business owners will set

the task to integrate the API, and developers will have no other choice but

to implement it (which, by the way, means that investing in the readability

and consistency of  the API is not that important).



The truth, of  course, lies somewhere in between. In some markets and

subject areas, it is developers who make decisions (e.g. , which framework

to choose); in other markets and areas, it might be business owners or

customers. It also depends on the competitiveness of  the market:

introducing a new frontend framework does not encounter much

resistance while developing, let's say, a new mobile operating system

requires million-dollar investments in promotions and strategic

partnerships.

Herea�er, we will describe some “averaged” situations, meaning that all

three levels of  the pyramid are important: customers choose the product

that best �ts their needs, business owners seek quality guarantees and

lower development costs, and so�ware engineers care about the API

capabilities and the convenience of  working with it.



Chapter 51. API Business Models

Before we proceed to the API product management principles, let us draw

your attention to the matter of  pro�ts that the API vendor company might

extract from it. As we will demonstrate in the next chapters, this is not an

idle question as it directly a�ects making product decisions and setting

KPIs for the API team. In this chapter, we will enumerate the main API

monetization models. [In brackets, we will provide examples of  such

models applicable to our co�ee-machine API study.]

1. Developers = End Users

The easiest and most understandable case is that of  providing a service for

developers, with no end users involved. First of  all, we talk about so�ware

engineering tools: APIs of  programming languages, frameworks,

operating systems, UI libraries, game engines, etc. — general-purpose

interfaces, in other words. [In our co�ee API case, it means the following:

we've developed a library for ordering a cup of  co�ee, possibly furnished

with UI components, and now selling it to co�eeshop chains owners who

are willing to buy it to ease the development of  their own applications.] In

this case, the answer to the “why have an API” question is self-evident.

There is also a plethora of  monetizing techniques; in fact, we're just

talking about monetizing so�ware for developers.

�. The framework  / library  / platform might be paid per se, e.g. ,

distributed under a commercial license. Nowadays such models are

becoming less and less popular with the rise of  free and open-source

so�ware but are still quite common.



�. The API may be licensed under an open license with some restrictions

that might be li�ed by buying an extended license. It might be either

functional limitations (an inability to publish the app in the app store

or an incapacity to build the app in the production mode) or usage

restrictions (for example, using the API for some purposes might be

prohibited or an open license might be “contagious,” i.e. , require

publishing the derived code under the same license).

�. The API itself  might be free, but the API vendor might provide

additional paid services (for example, consulting or integrating ones),

or just sell the extended technical support.

�. The API development might be sponsored (explicitly or implicitly) by

the platform or operating system owners [in our co�ee case — by the

vendors of  smart co�ee machines] who are interested in providing a

wide range of  convenient tools for developers to work with the

platform.

�. Finally, by publishing the API under a free license, the API vendor

might be attracting attention to other programming tools it makes to

increase sales.

Remarkably, such APIs are probably the only “pure” case when developers

choose the solution solely because of  its clean design, elaborate

documentation, thought-out use cases, etc. There are examples of  copying

the API design (which is the sincerest form of  �attery, as we all know!) by

other companies or even enthusiastic communities — that happened, for

example, with the Java language API (an alternate implementation by

Google) and the C# one (the Mono project) — or just borrowing apt

solutions — as it happened with the concept of  selecting DOM elements

with CSS selectors, initially implemented in the cssQuery project, then

adopted by jQuery, and a�er the latter became popular, incorporated as a

part of  the DOM standard itself.



2. API = the Main and/or the Only Access to the Service

This case is close to the previous one as developers again, not end users,

are API consumers. The di�erence is that the API is not a product per se,

but the service exposed via the API is. The purest examples are cloud

platform APIs like Amazon AWS or Braintree API. Some operations are

possible through end-user interfaces, but generally speaking, the services

are useless without APIs. [In our co�ee example, imagine we are an

operator of  “cloud” co�ee machines equipped with drone-powered

delivery, and the API is the only means of  making an order.]

Usually, customers pay for the service usage, not for the API itself, though

frequently the tari�s depend on the number of  API calls.

3. API = a Partner Program

Many commercial services provide access to their platforms for third-

party developers to increase sales or attract additional audiences.

Examples include the Google Books partner program, Skyscanner Travel

APIs, and Uber API. [In our case study, it might be the following model: we

are a large chain of  co�ee shops, and we encourage partners to sell our

co�ee through their websites or applications.] Such partnerships are fully

commercial: partners monetize their own audience, and the API provider

company yearns to get access to a broader public and additional

advertising channels. As a rule, the API provider company pays for users

reaching target goals and sets requirements for the integration

performance level (for example, in a form of  a minimum acceptable click-

target ratio) to avoid misusing the API.



4. API = Additional Access to the Service

If  a company possesses some unique expertise, usually in the form of  a

dataset that couldn't be easily gathered if  needed, quite logically a demand

for the API exposing this expertise arises. The most classical examples of

such APIs are cartographical APIs: collecting detailed and precise geodata

and keeping it up-to-date are extremely expensive, while a wide range of

services would become much more useful if  they featured an integrated

map. [Our co�ee example hardly matches this pattern as the data we

accumulate — co�ee machine locations, beverage types — is something

useless in any other context but ordering a cup of  co�ee.]

This case is the most interesting one from the API developers' point of

view as the existence of  the API does really serve as a multiplier to the

opportunities as the expertise owner could not physically develop all

imaginable services utilizing the expertise but might help others to do it.

Providing the API is a win-win: third-party services got their functionality

improved, and the API provider got some pro�ts.

Access to the API might be unconditionally paid. However, hybrid models

are more common: the API is free until some threshold is reached, such as

usage limits or constraints (for example, only non-commercial projects

are allowed). Sometimes the API is provided for free with minimal

restrictions to popularize the platform (for example, Apple Maps).

B2B services are a special case. As B2B service providers bene�t from

o�ering diverse capabilities to partners, and conversely partners o�en

require maximum �exibility to cover their speci�c needs, providing an

API might be the optimal solution for both. Large companies have their

own IT departments and more frequently need APIs to connect them to

internal systems and integrate them into business processes. Also, the API

provider company itself  might play the role of  such a B2B customer if  its

own products are built on top of  the API.



NB: We rather disapprove of  the practice of  providing an external API

merely as a byproduct of  the internal one without making any changes to

bring value to the market. The main problem with such APIs is that

partners' interests are not taken into account, which leads to numerous

problems:

The API doesn't cover integration use cases well:

Internal customers employ a quite speci�c technological stack,

and the API is poorly optimized to work with other

programming languages / operating systems / frameworks.

For external customers, the learning curve will be pretty steep as

they can't take a look at the source code or talk to the API

developers directly, unlike internal customers who are much

more familiar with the API concepts.

Documentation o�en covers only some subset of  use cases

needed by internal customers.

The API services ecosystem which we will describe in the “API

Services Lineup” chapter usually doesn't exist.

Any resources spent are directed towards covering internal customer

needs �rst. It means the following:

API development plans are totally opaque to partners and

sometimes look absurd with obvious problems being neglected

for years.

Technical support of  external customers is �nanced on le�overs.

O�en, developers of  internal services break backward compatibility

or issue new major versions whenever they need it and don't care

about the consequences of  these decisions for external API partners.

All those problems lead to having an external API that actually hurts the

company's reputation, not improves it. You're providing a very bad service

for a very critical and skeptical audience. If  you don't have enough

resources to develop the API as a product for external customers, it's better

not to even start.



5. API = an Advertisement Site

In this case, we mostly talk about things like widgets and search engines as

direct access to end users is a must to display commercials. The most

typical examples of  such APIs are advertisement networks APIs. However,

mixed approaches do exist as well, meaning that some API, usually a

searching one, goes with commercial insets. [In our co�ee example, it

means that the o�er searching function will start promoting paid results

on the search results page.]

6. API = Self-Advertisement and Self-PR

If  an API has neither explicit nor implicit monetization, it might still

generate some income by increasing the company's brand awareness

through displaying logos and other recognizable elements in partners'

apps, either native (if  the API goes with UI elements) or agreed-upon ones

(if  partners are obliged to embed speci�c branding in those places where

the API functionality is used or the data acquired through API is

displayed). The API provider company's goals in this case are either

attracting users to the company's services or just increasing brand

awareness in general. [In the case of  our co�ee example, let's imagine that

our main business is something totally unrelated to co�ee machine APIs,

like selling tires, and by providing the API we hope to increase brand

recognition and get a reputation as an IT company.]

The target audiences for such self-promotion might also di�er:

You might seek to increase brand awareness among end users (by

embedding logos and links to your services on partner's websites and

applications), and even build the brand exclusively through such

integrations [for example if  our co�ee API provides co�ee shop

ratings and we're working hard to make consumers demand the

co�ee shops to publish the ratings].



You might concentrate e�orts on increasing awareness among

business owners [for example, for partners integrating a co�ee

ordering widget on their websites, also pay attention to your tires

catalog].

Finally, you might provide APIs only to make developers know your

company's name to increase their knowledge of  your other products

or just to improve your reputation as an employer (this activity is

sometimes called “tech-P�”).

Additionally, we might talk about forming a community, i.e. , a network of

developers (or customers, or business owners) who are loyal to the

product. The bene�ts of  having such a community might be substantial:

lowering the technical support costs, getting a convenient channel for

publishing announcements regarding new services and new releases, and

obtaining beta users for upcoming products.

7. API = a Feedback and UGC Tool

If  a company possesses some big data, it might be useful to provide a

public API for users to make corrections in the data or otherwise get

involved in working with it. For example, cartographical API providers

usually allow the audience to post feedback or correct mistakes right on

partners' websites and applications. [In the case of  our co�ee API, we

might be collecting feedback to improve the service, both passively

through building co�ee shop ratings or actively through contacting

business owners to convey users' requests or �nding new co�ee shops that

are still not integrated with the platform.]



8. Terraforming

Finally, the most altruistic approach to API product development is

providing it free of  charge (or as an open-source or open-data project) just

to change the landscape. If  today nobody is willing to pay for the API, we

might invest in popularizing the functionality hoping to �nd commercial

niches later (in any of  the aforementioned formats) or to increase the

signi�cance and usefulness of  the API integrations for end users (and

therefore the readiness of  the partners to pay for the API). [In the case of

our co�ee example, imagine a co�ee machine maker that starts providing

APIs for free aiming to make having an API a “must” for every co�ee

machine vendor thus allowing for the development of  commercial API-

based services in the future.]

9. Gray Zones

One additional source of  income for the API provider is the analysis of  the

requests that end users make. In other words, collecting and reselling

some user data. You must be aware that the di�erence between acceptable

data collection (such as aggregating search requests to understand trends

or �nding promising locations for opening a co�ee shop) and

unacceptable ones is quite vague and tends to vary in time and space (e.g. ,

some actions might be totally legal on one side of  the state border and

totally illegal on the other side). Making a decision to monetize the API

with it should be carried out with extreme caution.



The API-First Approach

In the last several years we have seen the trend of  providing some

functionality as an API (i.e. , as a product for developers) instead of

developing the service for end users. This approach, dubbed “API-�rst,”

re�ects the growing specialization in the IT world: developing APIs

becomes a separate area of  expertise that businesses are ready to

outsource instead of  spending resources to develop internal APIs for their

applications by the in-house IT department. However, this approach is not

universally accepted (yet), and you should keep in mind the factors that

a�ect the decision of  launching a service in the API-�rst paradigm:

�. The target market must be su�ciently heated up: there must be

companies there that possess enough resources to develop services

atop third-party APIs and pay for it (unless your aim is terraforming).

�. The quality of  the service must not su�er if  the service is provided

only through the API.

�. You must really possess expertise in API development; otherwise,

there are high chances of  making too many design mistakes.

Sometimes providing APIs is a method to “probe the ground,” i.e. , to

evaluate the market and decide whether it's worth having a full-scale user

service there. (We rather condemn this practice as it inevitably leads to

discontinuing the API or limiting its functionality, either because the

market turns out to be not as pro�table as expected, or because the API

eventually becomes a competitor to the main service.)



Chapter 52. Developing a Product Vision

The above-mentioned fragmentation of  the API target audience, i.e. , the

“developers — business — end users” triad, makes API product

management quite a non-trivial problem. Yes, the basics are the same: �nd

your audience's needs and satisfy them. The problem is that your product

has several di�erent audiences, and their interests sometimes diverge. The

end users' request for an a�ordable cup of  co�ee does not automatically

imply business demand for a co�ee machine API.

Generally speaking, the API product vision must include the same three

elements:

Grasping how end users would like to have their problems solved

Projecting how businesses would solve those problems if  appropriate

tools existed

Understanding what technical solutions for developers might exist to

help them implement the functionality businesses would ask for, and

where the boundaries of  their applicability lie.

In di�erent markets and di�erent situations, the “weight” of  each element

di�ers. If  you're creating an API-�rst product for developers with no UI

components, you might skip the end users' problem analysis. On the other

hand, if  you're providing an API with extremely valuable functionality and

you hold a close-to-monopolistic position in the market, you might

actually not care about how developers love your so�ware architecture or

the convenience of  your interfaces for them, as they simply have no other

choice.

Still, in the majority of  cases, we have to deal with two-step heuristics

based on either technical capabilities or business demands:



You might �rst form the vision of  how you can help business owners

given the technical capabilities you have (heuristics step one) then

develop a general vision of  how your API will be used to satisfy end

users' needs (heuristics step two), or

Given your understanding of  business owners' problems, you can

take one heuristic “step right” to outline future functionality for end

users and one “step le�” to evaluate possible technical solutions.

Since both approaches are still heuristic, the API product vision is

inevitably fuzzy, and that's quite normal. If  you had a full and clear

understanding of  what end-user products could be developed on top of

your API, you might have developed them yourself, bypassing

intermediary agents. It is also important to keep in mind that many APIs

go through the “terraforming” stage (see the previous chapter), preparing

the ground for new markets and new types of  services. Therefore, your

idealistic vision of  a nearby future where delivering freshly brewed co�ee

by drones becomes the norm of  life is to be re�ned and clari�ed as new

companies providing new kinds of  services enter the market. (This, in

turn, will impact monetization models as detailing the countenance of  the

forthcoming will make your abstract KPIs and theoretical bene�ts of

having an API more and more concrete.)

The same fuzziness should be kept in mind when conducting interviews

and gathering feedback. So�ware engineers will mainly report problems

they encountered during technical integrations and rarely discuss

business-related issues. Meanwhile, business owners care little about the

inconvenience of  writing code. Both groups will have some knowledge

regarding end users' problems, but it's usually limited to the market

segment in which the partner operates.

If  you do have access to end users' action monitoring (see “The API Key

Performance Indicators” chapter), you can try to analyze typical user

behavior through these logs and understand how users interact with the

partners' applications. However, you will need to conduct this analysis on

a per-application basis and attempt to clusterize the most common



scenarios.

Checking Product Hypotheses

In addition to the general complexity of  formulating the product vision,

there are also tactical issues with checking product hypotheses. “The Holy

Grail” of  product management — creating a cheap (in terms of  resource

expenditure) minimal viable product (MVP) — is typically unavailable for

an API product manager. The reason is that you can't easily test the

solution even if  you manage to develop an API MVP. To do so, partners

would need to develop an application, i.e. , invest their money. If  the outcome

of  the experiment is negative, meaning that further development appears

unpromising, this money will be wasted. Of  course, partners will be a little

bit skeptical towards such proposals. Therefore, a “cheap” MVP should

include either compensation for partners' expenses or a budget to develop

a reference implementation (i.e. , a complementary application speci�cally

developed to support the API MVP).

You can partially address the problem by having a third-party company

release the MVP, for example, in the form of  an open-source module

published in a developer's personal repository. However, you will struggle

with hypothesis validation issues as such modules might easily go

unnoticed.

Another option for checking conjectures is recruiting other developers

within the API provider company to try the API in their services. Internal

customers are usually much more loyal towards spending some e�ort to

check a hypothesis, and it's much easier to negotiate MVP curtailing or

freezing with them. The problem is that you can only validate those ideas

that are relevant to the company's internal needs.



Also, applying the “eat your own dog food” concept to APIs means that the

API product team should have their own test applications (so-called “pet

projects”) on top of  the API. Given the complexity of  developing such

applications, it makes sense to encourage having them, for example, by

giving free API quotas to team members and providing su�cient free

computational resources.

Such pet projects are also valuable because of  the unique experience they

allow to gain: everyone might try a new role. Developers will learn about

product managers' typical problems: it's not enough to write good code,

you also need to know your customer, understand their demands,

formulate an attractive concept, and e�ectively communicate it. On the

other hand, product managers will gain understanding of  how exactly

easy or hard it is to bring their product vision to life and what challenges

they may face. Finally, both groups will bene�t from taking a fresh look at

the API documentation and putting themselves in the shoes of  a developer

who is hearing about the API product for the �rst time and struggling to

grasp the basics.



Chapter 53. Communicating with Developers

As we have described in the previous chapters, managing an API product

requires building relationships with both business partners and

developers. (Ideally, with end users as well, although this option is seldom

available to API providers.)

Let's start with developers. The speci�cs of  so�ware engineers as an

audience are as follows:

Developers are highly educated individuals with practical thinking.

As a rule, they choose technical products with extreme rationality

(unless you're giving them cool backpacks with fancy prints for free).

This doesn't prevent them from having a certain aptitude

towards, let's say, speci�c programming languages or

frameworks; however, in�uencing those aptitudes is extremely

hard and is normally not within the API vendor's power.

Developers are quite skeptical towards promotional materials and

overstatements. They are ready to actually check whether your claims

are true.

It is very hard to communicate with developers via regular marketing

channels. They get information from highly specialized communities

and they stick to opinions proved by concrete numbers and examples

(ideally, code samples).

The words of  “in�uencers” are not very valuable to them, as no

opinions are trusted if  unsubstantiated.

The ideas of  open source and free so�ware are widespread among

developers If  you try to make money out of  things that they believe

should be free and/or open (for example, by proclaiming interfaces as

intellectual property), you will face resistance (and views on these

“shoulds” di�er).



Because of  the aforementioned speci�cs (especially the relative

insigni�cance of  in�uencers and the critical attitude towards

promotions), you will have to communicate to developers via very speci�c

media:

Collective blogs (like the “r/programming” subreddit or dev.to)

Q&A sites (Stack Over�ow, Experts Exchange)

Educational services (Codecademy, Udemy)

Technical conferences and webinars.

In all these channels, direct advertising of  your API is either problematic

or impossible. (Well, strictly speaking, you may buy a banner on one of  the

sites advertising the advantages of  your API, but we highly doubt it will

improve your relations with developers.) You need to generate valuable

and/or interesting content for them, which will improve their knowledge

of  your API. And this is the job for your developers: writing articles,

answering questions, recording webinars, and giving pitches.

Developers enjoy sharing their experiences and will probably be eager to

do so — during their work hours. A proper conference talk, let alone an

educational course, requires a lot of  preparation time. From this book's

author's experience, two things are crucial for tech PR:

Incentives, even nominal ones — the job of  promoting a product

should be rewarded

Methodicalness and quality standards — you might actually do

content review just like you do code review.

Nothing could be worse counter-advertising for your product than a

poorly prepared pitch (as we said, mistakes will inevitably be found and

pointed out) or a badly camou�aged commercial in the form of  a pitch (the

reason is actually the same). Texts need to be worked upon: pay attention

to the structure, logic, and tempo of  the narration. Even a technical story

must be �nely constructed; a�er it's ended, the listeners must have a clear

understanding of  the idea you wanted to communicate (and it should

rather be linked with your API's �tness for their needs).



A word on “evangelists” (those are people who have credibility in the IT

community and work on promoting a technology or a tech company, either

as a company's contractor or even a sta�  member, e�ectively carrying out

all those aforementioned activities, such as blog posting, course preparing,

conference speaking, etc.) Having an evangelist makes the API

development team exempt from the necessity of  performing tech PR.

However, we would rather advise having this expertise inside the team, as

direct interaction with developers helps in forming the product vision.

(That doesn't mean evangelists are not needed at all - you might well

combine these two strategies.)

Open Source

The important question that will sooner or later arise for any API vendor is

whether to make the source code open. This decision has both advantages

and disadvantages:

You will improve the knowledge of  the brand, and some respect will

be paid to you by the IT community.

Given that your code is �nely written and commented.

You will receive some additional feedback, ideally in the form of  pull

requests from third-party developers.

You will also receive a number of  inquiries and comments

ranging from useless to obviously provocative ones, to which

you will have to respond politely.

Donating code to open source makes developers trust the company

more, and a�ects their readiness to rely on the platform.

However, it also increases risks, both from an information

security point of  view and in terms of  the product, as a

dissatis�ed community might fork your repository and create a

competing product.



Finally, just the preparations to make the code open might be very

expensive. You need to clean the code, switch to open building and testing

tools, and remove all references to proprietary resources. This decision is

to be made very cautiously a�er considering all pros and cons. We might

add that many companies try to reduce the risks by splitting the API code

into two parts: the open one and the proprietary one. Additionally, the

risks could be mitigated by selecting a license that disallows harming the

company's interests by using the open-sourced code (for example, by

prohibiting selling hosted solutions or by requiring the derivative works to

be open-sourced as well).

The Audience Fragmentation

There is one very important addition to the discourse: as information

technologies are universally in great demand, a signi�cant percentage of

your customers will not be professional so�ware engineers. A huge

number of  people are somewhere on the path to mastering the occupation.

Some are trying to write code in addition to the basic duties, others are

undergoing retraining, and some are studying the basics of  computer

science on their own. Many of  these non-professional developers have a

direct impact on the process of  selecting an API vendor, such as small

business owners who seek to automate routine tasks programmatically.

It would be more accurate to say that API providers are actually working

for two main types of  audiences:

Beginners and amateurs, for whom each integration task would be

completely new and unexplored territory

Professional developers who possess vast experience in integrating

di�erent third-party systems.

This fact greatly a�ects everything we discussed previously (except for,

perhaps, open-sourcing, as amateur developers pay little attention to it):



Your pitches, webinars, lectures, etc. , must somehow cater to both

professional and semi-professional audiences.

A signi�cant share of  inquiries to your customer support service will

be generated by the �rst category of  developers. It is much harder for

amateurs or beginners to �nd answers to their questions by

themselves, and they will reach out to you for assistance.

At the same time, the second category is much more sensitive to the

quality of  both the product and customer support, and ful�lling their

requests might be non-trivial.

Finally, it is almost impossible to create an API that will suit both amateur

and professional developers well within a single product. The former need

maximum simplicity in implementing basic use cases, while the latter seek

the ability to adapt the API to match their technological stack and

development paradigms and the problems they solve usually require deep

customization. We will discuss this matter in the “API Services Lineup”

chapter.



Chapter 54. Communicating with Business Owners

The basics of  interacting with business partners are to some extent

paradoxically contrary to the basics of  communicating with developers:

On one hand, partners are much more loyal and sometimes even

enthusiastic regarding the opportunities you o�er (especially free

ones).

On the other hand, conveying the meaning of  your o�er to business

owners is much more complicated than explaining it to developers, as

it is generally hard to explain the advantages of  integrating via APIs

as a concept to a non-technical person.

A�er all, working with a business audience essentially means elucidating

the characteristics and advantages of  the product. In that sense, an API

“sells” just like any other kind of  so�ware.

As a rule, the farther an industry sector is from information technologies,

the more enthusiastic its representatives are about your API features and

the less likely this enthusiasm will be converted into a real integration.

One thing that could help the case is extensive work with the developer

community (see the previous chapter), which will result in establishing a

circle of  freelancers and outsourcers eager to help non-IT businesses with

integrations. You can contribute to developing this market by creating

educational courses and issuing certi�cates that prove the bearer's skills in

working with your API (or a broader layer of  technology).

Market research and gathering feedback from business owners work

similarly. Businesses that are far from IT usually struggle to articulate

their demands, so you should be rather creative (and critical-minded)

when analyzing the gathered data.



Chapter 55. An API Services Lineup

The important rule of  API product management that any major API

provider will soon learn is this: don't just ship one speci�c API; there is

always room for a lineup of  products, and this lineup is two-dimensional.

Horizontal Scaling of API Services

Usually, any functionality available through an API can be split into

independent units. For example, in our co�ee API, there are o�er search

endpoints and order processing endpoints. Nothing could prevent us from

either pronouncing those functional clusters as di�erent APIs or, vice

versa, considering them as parts of  one API.

Di�erent companies employ di�erent approaches to determining the

granularity of  API services, i.e. , what is counted as a separate product and

what is not. To some extent, this is a matter of  convenience and subjective

judgment. Consider splitting an API into parts if:

It makes sense for partners to integrate only one API part, i.e. , there

are isolated subsets of  the API that alone provide enough means to

solve users' problems.

API parts can be versioned separately and independently, and it is

meaningful from the partners' point of  view. This usually means that

those “isolated” APIs are either fully independent or maintain strict

backward compatibility and introduce new major versions only when

absolutely necessary. Otherwise, maintaining a matrix which API #1

version is compatible with which API #2 version will soon become a

catastrophe.

It makes sense to set tari�s and limits for each API service

independently.



The audiences of  the API segments (developers, business owners, or

end users) do not overlap, and “selling” a granular API to customers is

much easier than an aggregated one.

NB: These split APIs might still be part of  a united SDK to make

programmers' lives easier.

Vertical Scaling of API Services

However, it o�en makes sense to provide multiple API services that

feature the same functionality. Let us remind you that there are two types

of  developers: professional ones who seek extensive customization

capabilities (as they usually work in big IT companies with a speci�c

mindset towards integrations) and semi-professionals who just need the

gentlest possible learning curve. The only way to cover the needs of  both

categories is to develop a range of  products with di�erent entry thresholds

and requirements for developers' professional level. We can identify

several sub-types of  APIs, ordered from the most technically demanding

to the less complex ones.

�. The most advanced level is that of  physical APIs and abstractions

built on top of  them. [In our co�ee example, it refers to a collection of

entities that describe working with APIs of  physical co�ee machines

as discussed in the “Separating Abstraction Levels” and “Weak

Coupling” chapters.]

�. Next is the basic level, which involves working with product entities

through formal interfaces. [In our study example, this level

corresponds to the HTTP API for placing orders.]

�. Working with product entities can be simpli�ed by providing SDKs

for popular platforms that tailor API concepts according to the

paradigms of  those platforms. This bene�ts developers who are

pro�cient with speci�c platforms and saves them e�ort in dealing

with formal protocols and interfaces.



�. The next simpli�cation step is providing services for code generation.

In this service, developers can choose from pre-built integration

templates, customize option values, and obtain a ready-to-use piece

of  code that can be easily copied and pasted into their application

code (and can be further customized by adding some level 1-3 code).

This approach is sometimes called “point-and-click programming.”

[In the case of  our co�ee API, an example of  such a service might

have a form or screen editor for developers to place UI elements and

generate the working application code or a console script to

automatically produce application boilerplate.]

�. Finally, this approach can be simpli�ed even further if  the service

generates not just code but a ready-to-use component  / widget  /

frame and a one-liner to integrate it. [For example, if  we allow

embedding an iframe that handles the entire co�ee ordering process

directly on the partner's website, or describe the rules of  forming a

“deep link ” to our service.]

Ultimately, we will end up with the concept of  a meta-API where

these high-level components have their own API built on top of  the

basic API.

The important advantage of  having a lineup of  APIs is not only about

adapting it to the developer's capabilities but also about increasing the

level of  control you have over the code that partners embed into their

applications:

�. Applications that use physical interfaces are out of  your control. For

example, you can't force switching to newer versions of  the platform

or, let's say, add commercial inlets to them.

�. Applications that operate base APIs will allow you to manipulate

underlying abstraction levels — move to newer technologies or alter

the way search results are presented to an end user.

1



�. SDKs, especially those providing UI components, provide a higher

degree of  control over the look and feel of  partners' applications,

which allows you to evolve the UI by adding new interactive elements

and enriching the functionality of  existing ones. [For example, if  our

co�ee SDK contains a map of  co�ee shops, nothing could stop us

from making map objects clickable in the next API version or

highlighting paid o�erings.]

�. Code generation makes it possible to manipulate the desired form of

integrations. For example, if  our KPI is the number of  searches

performed through the API, we can alter the generated code so that

the search panel will be displayed in the most convenient position in

the application. As partners who use code-generation services rarely

make any changes to the resulting code, this will help us reach our

goals.

�. Finally, ready-to-use components and widgets are under your full

control, and you can experiment with the functionality exposed

through them in partners' applications as if  it were your own

services. (However, this doesn't automatically mean that you can

draw pro�ts from having this control. For example, if  you allow

hotlinking pictures by their direct URL, your control over this

integration is rather negligible, so it's generally better to provide

integration options that allow for more control over the functionality

in partners' applications.)

NB: While developing a “vertical” lineup of  APIs, it is crucial to follow the

principles discussed in the “On the Waterline of  the Iceberg” chapter. You

will only be able to manipulate the content and behavior of  a widget if

developers cannot “escape the sandbox,” meaning they do not have direct

access to low-level objects encapsulated within the widget.

In general, your aim should be to have each partner use the API services in

a manner that maximizes your pro�t as an API vendor. When a partner

only needs a typical solution, you would bene�t from making them use

widgets as they are under your direct control. This will help ease the API

version fragmentation problem and allow for experimentation to reach



your KPIs. When the partner possesses expertise in the subject area and

develops a unique service on top of  your API, you would bene�t from

allowing full freedom in customizing the integration. This way, they can

cover speci�c market niches and enjoy the advantage of  o�ering more

�exibility compared to services using competing APIs.

References

Mobile Deep Linking

en.wikipedia.org/wiki/Mobile_deep_linking

1

https://en.wikipedia.org/wiki/Mobile_deep_linking


Chapter 56. API Key Performance Indicators

As we described in the previous chapters, there are many API

monetization models, both direct and indirect. Importantly, most of  them

are fully or conditionally free for partners, and the direct-to-indirect

bene�ts ratio tends to change during the API lifecycle. That naturally leads

us to the question of  how exactly shall we measure the API's success and

what goals are to be set for the product team.

Of  course, the most explicit metric is money: if  your API is monetized

directly or attracts visitors to a monetized service, the rest of  the chapter

will be of  little interest to you, maybe just as a case study. If, however, the

contribution of  the API to the company's income cannot be simply

measured, you have to stick to other, synthetic, indicators.

The obvious key performance indicator (KPI) #1 is the number of  end users

and the number of  integrations (i.e. , partners using the API). Normally,

they are in some sense a business health barometer: if  there is a normal

competitive situation among the API suppliers, and all of  them are more

or less in the same position, then the �gure of  how many developers (and

consequently, how many end users) are using the API is the main metric of

success for the API product.

However, sheer numbers might be deceiving, especially if  we talk about

free-to-use integrations. There are several factors that make them less

reliable:

The high-level API services that are meant for point-and-click

integration (see the previous chapter) are signi�cantly distorting the

statistics, especially if  the competitors don't provide such services;

typically, for one full-scale integration there will be tens, maybe

hundreds, of  those lightweight embedded widgets.

Thereby, it's crucial to have partners counted for each kind of

integration independently.



Partners tend to use the API in suboptimal ways:

Embed it on every website page  / application screen instead of

only those where end users can really interact with the API

Put widgets somewhere deep in the page / screen footer, or hide

it behind spoilers

Initialize a broad range of  API modules but use only a limited

subset of  them.

The greater the API audience is, the less the number of  unique

visitors means as at some moment the penetration will be close to

100%; for example, a regular Internet user interacts with Google or

Facebook counters, well, every minute, so the daily audience of  those

APIs fundamentally cannot be increased further.

All the abovementioned problems naturally lead us to a very simple

conclusion: not only should the raw numbers of  users and partners be

gauged, but their engagement as well, i.e. , the target actions (such as

searching, observing speci�c data, interacting with widgets) should be

determined and counted. Ideally, these target actions must correlate with

the API monetization model:

If  the API is monetized through displaying ads, then the user's

activity towards those ads (e.g. , clicks, interactions) is to be measured.

If  the API attracts customers to the core service, then count the

transitions.

If  the API is needed for collecting feedback and gathering UGC, then

calculate the number of  reviews le� and entities edited.

Additionally, functional KPIs are o�en employed: how frequently some

API features are used. (Also, it helps with prioritizing further API

improvements.) In fact, that's still measuring target actions, but those

made by developers, not end users. It's rather complicated to gather usage

data for so�ware libraries and frameworks, though still doable (however,

you must be extremely cautious with that, as any audience rather

nervously reacts to �nding that some statistics are gathered

automatically).



The most complicated case is when the API is a tool for (tech)P� and

(tech)marketing. In this case, there is a cumulative e�ect: increasing the

API audience doesn't immediately bring any pro�t to the company. First,

you build a loyal developer community, then this reputation helps you hire

people. First, your company's logo �ashes on third-party webpages and

applications, then top-of-mind brand awareness increases. There is no

direct method of  evaluating how some action (let's say, a new release or an

event for developers) a�ects the target metrics. In this case, you have to

operate with indirect metrics, such as the audience of  the documentation

site, the number of  mentions in relevant communication channels, the

popularity of  your blogs and seminars, etc.

To summarize the paragraph:

Counting direct metrics such as the total number of  users and

partners is a must and is absolutely necessary for moving forward,

but that's not a proper KPI.

The proper KPI should be formulated based on the number of  target

actions made through the platform.

The de�nition of  target action depends on the monetization model

and might be quite straightforward (like the number of  paying

partners or the number of  paid ad clicks) or, conversely, pretty

implicit (like the growth of  the company's developer blog audience).



SLA

This chapter would be incomplete if  we didn't mention the “hygienic” KPI

— service level and availability. We won't describe the concept in detail, as

the API SLA isn't any di�erent from SLAs for other digital services. Let us

just state that this metric must be tracked, especially if  we talk about pay-

to-use APIs. However, in many cases, API vendors prefer to o�er rather

loose SLAs, treating the provided functionality as data access or content

licensing services.

Still, let us reiterate once more: any problems with your API are

automatically multiplied by the number of  partners you have, especially if

the API is vital for them, i.e. , the API outage makes the main functionality

of  their services unavailable. (And actually, because of  the above-

mentioned reasons, the average quality of  integrations implies that

partners' services will su�er even if  the availability of  the API is not

formally speaking critical for them, but because developers use it

excessively and do not bother with proper error handling.)

It is important to mention that predicting the workload for the API service

is rather complicated. Sub-optimal API usage, e.g. , initializing the API in

those parts of  applications and websites where it's not actually needed,

might lead to a colossal increase in the number of  requests a�er changing

a single line of  a partner's code. The safety margin for an API service must

be much higher than for a regular service for end users — it must survive

the situation of  the largest partner suddenly starting to query the API on

every page and every application screen. (If  the partner is already doing

that, then the API must survive doubling the load if  the partner

accidentally starts initializing the API twice on each page / screen.)

Another extremely important hygienic minimum is the informational

security of  the API service. In the worst-case scenario, namely, if  an API

service vulnerability allows for exploiting partner applications, one

security loophole will in fact be exposed in every partner application. Needless

to say, the cost of  such a mistake might be overwhelmingly colossal, even



if  the API itself  is rather trivial and has no access to sensitive data

(especially if  we talk about webpages where no “sandbox” for third-party

scripts exists, and any piece of  code might, for example, track the data

entered in forms). API services must provide the maximum level of

protection (e.g. , choose cryptographic protocols with a certain overhead)

and promptly react to any reports regarding possible vulnerabilities.

Comparing to Competitors

While measuring KPIs of  any service, it's important not only to evaluate

your own numbers but also to compare them against the state of  the

market:

What is your market share, and how is it evolving over time?

Is your service growing faster than the market itself, or is the growth

rate the same, or is it even less?

What proportion of  the growth is caused by the growth of  the

market, and what is related to your e�orts?

Getting answers to those questions might be quite non-trivial in the case

of  API services. Indeed, how could you learn how many integrations your

competitor had during the same period, and what number of  target

actions had happened on their platform? Sometimes, the providers of

popular analytical tools might help you with this, but usually, you have to

monitor potential partners' apps and websites and gather statistics

regarding the APIs they're using. The same applies to market research:

unless your niche is signi�cant enough for some analytical company to

conduct a study, you will have to either commission such work or make

your own estimations — conversely, through interviewing potential

customers.



Chapter 57. Identifying Users and Preventing Fraud

In the context of  working with an API, we talk about two kinds of  users of

the system:

Users-developers, i.e. , your partners writing code atop of  the API

End users interacting with applications implemented by the users-

developers.

In most cases, you need to have both of  them identi�ed (in a technical

sense: discern one unique customer from another) to answer the following

questions:

How many users are interacting with the system (simultaneously,

daily, monthly, and yearly)?

How many actions does each user perform?

NB: Sometimes, when an API is very large and/or abstract, the chain

linking the API vendor to end users might comprise more than one

developer as large partners provide services implemented atop of  the API

to the smaller ones. You need to count both direct and “derivative”

partners.

Gathering this data is crucial for two reasons:

To understand the system's limits and to be capable of  planning its

growth

To understand the number of  resources (ultimately, money) that are

spent (and gained) on each user.

In the case of  commercial APIs, the quality and timeliness of  gathering

this data are twice as important because the tari�  plans (and therefore the

entire business model) depend on it. Therefore, the question of  how exactly

we're identifying users is crucial.



Identifying Applications and Their Owners

Let's start with the �rst user category, i.e. , API business partners-

developers. The important remark: there are two di�erent entities we

must learn to identify, namely applications and their owners.

An application is roughly speaking a logically separate case of  API usage,

usually — literally an application (mobile or desktop one) or a website, i.e. ,

some technical entity. Meanwhile, an owner is a legal body that you have

the API usage agreement signed. If  API Terms of  Service (ToS) imply

di�erent limits and/or tari�s depending on the type of  the service or the

way it uses the API, this automatically means the necessity to track one

owner's applications separately.

In the modern world, the factual standard for identifying both entities is

using API keys: a developer who wants to start using an API must obtain

an API key bound to their contact info. Thus the key identi�es the

application while the contact data identi�es the owner.

Though this practice is universally widespread we can't help but notice

that in most cases it's useless, and sometimes just destructive.

Its general advantage is the necessity to supply actual contact info to get a

key, which theoretically allows for contacting the application owner if

needed. (In the real world, it doesn't work: key owners o�en don't read

mailboxes they provided upon registration; and if  the owner is a company,

it might easily be a no-one's mailbox or a personal email of  some

employee who le� the company a couple of  years ago.)

The main disadvantage of  using API keys is that they don't allow for

reliably identifying both applications and their owners.



If  there are free limits to API usage, there is a temptation to obtain many

API keys bound to di�erent owners to �t those free limits. You may raise

the bar of  having such multi-accounts by requiring, let's say, providing a

phone number or bank card data, but there are popular services for

automatically issuing both. Paying for a virtual SIM or credit card (to say

nothing about buying the stolen ones) will always be cheaper than paying

the proper API tari�  — unless it's the API for creating those cards.

Therefore, API key-based user identi�cation (if  you're not requiring the

physical contract to be signed) does not mean you don't need to double-

check whether users comply with the terms of  service and do not issue

several keys for one app.

Another problem is that an API key might be simply stolen from a lawful

partner; in the case of  mobile or web applications, that's quite trivial.

It might appear that the problem is not as signi�cant in the case of  server-

to-server integrations, but it actually is. Imagine that a partner provides a

public service of  their own that uses your API under the hood. This usually

means there is an endpoint in the partner's backend that makes a request

to the API and returns the result, and this endpoint can be easily used by a

cybercriminal as a free replacement for direct access to the API. Of  course,

you might argue that this fraud is the partner's problem, but �rstly, it

would be naïve to expect that every partner develops their own anti-fraud

system, and secondly, it is sub-optimal: a centralized anti-fraud system

would undoubtedly be way more e�ective than a collection of  amateur

implementations. Furthermore, server keys might also be stolen;

although, it's more challenging than stealing client keys, it's still feasible.

With any popular API, sooner or later you will encounter the situation of

stolen keys being made available to the public (or a key owner sharing it

with acquaintances out of  kindness).

In one way or another, the issue of  independent validation arises: how can

we control whether the API endpoint is being requested by a user in

compliance with the terms of  service?



Mobile applications could be conveniently tracked through their

identi�ers in the corresponding store (Google Play, App Store, etc.), so it

makes sense to require this identi�er to be passed by partners as an API

initialization parameter. Websites, with some degree of  con�dence, can be

identi�ed by the Referer and Origin HTTP headers.

This data is not entirely reliable, but it allows for cross-checks:

If  a key was issued for one speci�c domain but requests are coming

with a di�erent Referer, it makes sense to investigate the situation

and maybe ban the possibility of  accessing the API with this Referer

or this key.

If  an application initializes the API by providing a key registered to

another application, it makes sense to contact the store

administration and request the removal of  one of  the apps.

NB: Don't forget to set in�nite limits for using the API with the localhost

and 127.0.0.1  / [::1] Referers, and also for your own sandbox if  it

exists. Yes, abusers will sooner or later learn this fact and start exploiting

it, but otherwise, you will ban local development and your own website

much sooner than that.

The general conclusion is:

It is highly desirable to have partners formally identi�ed (either

through obtaining API keys or by providing contact data such as

website domain or application identi�er in a store during API

initialization).

This information should not be blindly trusted; double-checking

mechanisms are necessary to identify suspicious requests.



Identifying End Users

Usually, you can impose requirements for partners to self-identify, but it's

o�en impossible to ask end users to disclose their contact information. All

the methods of  measuring the audience described below are imprecise and

o�en heuristic. (Even if  partner application functionality is only available

a�er registration and you do have access to that pro�le data, it's still a

game of  assumptions, as an individual account is not the same as an

individual user: several di�erent persons might use a single account, or,

vice versa, one person might register many accounts.) Also, note that

gathering such data might be subject to legal regulations, even when

discussing anonymized data.

�. The simplest and most obvious indicator is an IP address. It's very

hard to counterfeit them (i.e. , the API server always knows the

remote address), and statistics related to IP addresses are reasonably

demonstrative.

If  the API is provided server-to-server, there will be no access to the

end user's IP address. However, it makes sense to require partners to

propagate the IP address (for example, in the form of  the X-

Forwarded-For header) — among other things, to assist partners in

combating fraud and unintended API usage.

Until recently, IP addresses were also a convenient statistical

indicator because acquiring a large pool of  unique addresses was

quite expensive. However, with the advancement of  IPv6, this

restriction is no longer applicable. IPv6 has rather shed light on the

fact that you can't just count unique addresses — the aggregates are to

be tracked:

The cumulative number of  requests by networks, i.e. ,

hierarchical calculations (the number of  /8, /16, /24, etc.

networks)

The cumulative statistics by autonomous networks (AS)



The API requests through known public proxies and TOR

network.

An abnormal number of  requests from one network might be

evidence of  the API being actively used within a corporate

environment (or the widespread use of  NATs in the region).

�. An additional means of  tracking are users' unique identi�ers, most

notably cookies. However, recently this method of  data gathering has

been under attack from several directions: browser makers are

restricting third-party cookies, users are employing anti-tracker

so�ware, and lawmakers have started rolling out legal requirements

against data collection. In the current situation, it's much easier to

stop using cookies than to comply with all the regulations.

All this leads to a situation where public APIs (especially those

installed on free-to-use sites and applications) are very limited in

their ability to collect statistics and analyze user behavior. These

restrictions impact not only the �ght against various types of  fraud

but also the analysis of  user scenarios. This is the way.

NB: In some jurisdictions, IP addresses are considered personal data, and

collecting them is prohibited as well. We don't dare to advise on how an

API vendor might simultaneously �ght prohibited content on the platform

and not have access to users' IP addresses. We presume that complying

with such legislation implies storing statistics by IP address hashes. (And

just in case we won't mention that building a rainbow table for SHA-256

hashes covering the entire 4-billion range of  IPv4 addresses would take

several hours on a regular o�ce-grade computer.)



Chapter 58. The Technical Means of Preventing ToS
Violations

Implementing the centralized system to prevent partner endpoint-bound

fraud, as described in the previous chapter, faces practical challenges.

The task of  �ltering out illicit API requests comprises three steps:

Identifying suspicious users

Optionally, requesting an additional authentication factor

Making decisions and applying access restrictions.

1. Identifying Suspicious Users

Generally speaking, there are two approaches we might take: the static one

and the dynamic (behavioral) one.

Statically we monitor suspicious activity surges, as described in the

previous chapter, marking an unusually high density of  requests coming

from speci�c networks or Referers (actually, any piece of  information

suits if  it splits users into more or less independent groups: for example,

OS version or system language would su�ce if  you can gather those).

Behavioral analysis involves examining the history of  requests made by a

speci�c user, i.e. , searching for non-typical patterns, such as an “inhuman”

order of  traversing endpoints or too small pauses between requests.

Importantly, when we talk about “users,” we will have to create duplicate

systems to observe them using both tokens (cookies, logins, phone

numbers) and IP addresses, as malefactors aren't obliged to preserve the

tokens between requests or might keep a pool of  them to impede their

exposure.



2. Requesting an Additional Authentication Factor

As both static and behavioral analyses are heuristic, it's highly desirable

not to make decisions based solely on their outcome but rather ask the

suspicious users to additionally prove they're making legitimate requests.

Implementing such a mechanism signi�cantly improves the quality of  an

anti-fraud system, increasing system sensitivity and enabling proactive

defense by requiring users to pass tests in advance.

In the case of  services for end users, the main method of  acquiring the

second factor is redirecting to a captcha page. In the case of  APIs it might

be problematic, especially if  you initially neglected the “Stipulate

Restrictions” rule we've given in the “Describing Final Interfaces” chapter.

In many cases, you may need to delegate this responsibility to partners,

meaning partners will display captchas and identify users based on signals

received from the API endpoints. This will, of  course, signi�cantly impair

the convenience of  working with the API.

NB: Instead of  captchas, other actions introducing additional

authentication factors could be used. It might be the phone number

con�rmation or the second step of  the 3D-Secure protocol. The important

part is that requesting an additional authentication step must be

stipulated in the program interface, as it can't be added later in a

backward-compatible manner.

Other popular mechanics of  identifying robots include o�ering bait

(“honeypot”) or employing execution environment checks (starting from

rather trivial ones like executing JavaScript on the webpage and ending

with sophisticated techniques of  checking application integrity

checksums).



3. Restricting Access

Don't be deceived by the illusion of  having a wide range of  technical

means to identify fraudulent users; you will soon realize the lack of

e�ective methods to restrict them. Banning them based on cookies  /

Referer / User-Agent makes little to no impact as this data is supplied by

clients and can be easily forged. In the end, you have four mechanisms for

suppressing illegal activities:

Banning users by IP addresses (networks, autonomous systems)

Requiring mandatory user identi�cation (maybe tiered: login  / login

with a con�rmed phone number  / login with a con�rmed identity  /

login with a con�rmed identity and biometrics / etc.)

Returning fake responses

Filing administrative abuse reports.

The problem with the �rst option is the collateral damage you will in�ict,

especially when banning subnets.

The second option, while rational, is o�en impractical for real APIs

because not every partner will agree with the approach, and certainly

many users will churn o�. This will also require compliance with existing

personal data laws.

The third option is the most e�ective one in technical terms as it allows

putting the ball in the malefactor's court: it is now up to them to �gure out

how to determine if  the robot was detected. But from a moral point of  view

(and from a legal perspective as well) this method is rather questionable,

especially if  we take into account the probability of  false-positive signals,

meaning that some real users will get fake data.

Therefore, you have only one method that truly works: �ling complaints

with hosting providers, ISPs, or law enforcement authorities. Needless to

say, this brings certain reputational risks, and the reaction time is rather

not lightning fast.



In most cases, you're not �ghting fraud — you're actually increasing the

cost of  the attack, simultaneously buying yourself  enough time to take

administrative actions against the perpetrator. Preventing API misuse

completely is impossible as malefactors might ultimately employ the

expensive but bulletproof  solution — hiring real people to make the

requests to the API on real devices through legitimate applications.

An opinion exists, which the author of  this book shares, that engaging in

this sword-against-shield confrontation must be carefully thought out,

and advanced technical solutions are to be enabled only if  you are one

hundred percent sure it is worth it (e.g. , if  they steal real money or data).

By introducing elaborate algorithms, you rather conduct an evolutionary

selection of  the smartest and most cunning cybercriminals, counteracting

whom will be way harder than those who just naïvely call API endpoints

with curl. Furthermore, in the �nal phase, when �ling a complaint with

authorities, you'll need to prove the alleged ToS violation, which can be

challenging when dealing with advanced fraudsters. So it's rather better to

have all the malefactors monitored (and regularly reported), and escalate

the situation (i.e. , enable technical protection and initiate legal actions)

only if  the threat passes a certain threshold. That also implies having all

the tools ready and keeping them below infringers' radars.

Based on the author of  this book's experience, mind games with

malefactors, where you respond to any improvement of  their script with

the smallest possible e�ort that is enough to break it, might continue

inde�nitely. This strategy, i.e. , making fraudsters guess which traits were

used to ban them this time (instead of  unleashing the whole heavy

artillery potential), greatly annoys amateur “hackers” as they lack hard

engineering skills and eventually give up.



Dealing with Stolen Keys

Now let's address the second type of  unlawful API usage, namely the use

keys stolen from conscientious partners in the malefactor's applications.

Since the requests are generated by real users, captchas won't help, but

other techniques will.

�. Maintaining metrics collection by IP addresses and subnets might be

useful in this case as well. If  the malefactor's app isn't public but

rather targeted to a closed audience, this fact will be visible on the

dashboards (and if  you're lucky enough, you might also �nd

suspicious Referers, public access to which is restricted).

�. Allowing partners to restrict the functionality available under

speci�c API keys:

Setting the allowed IP address range for server-to-server APIs,

allowed Referers and application ids for client APIs

White-listing only allowed API functions for a speci�c key

Other restrictions that make sense in your case (in our co�ee API

example, it's convenient to allow partners to prohibit API calls

outside of  the countries and cities they work in).

�. Introducing additional request signing:

For example, if  there is a form displaying the best lungo o�ers

on the partner's website, for which the partners call the API

endpoint like /v1/search?recipe=lungo&api_key={apiKey}, then

the API key might be replaced with a signature like sign =

HMAC("recipe=lungo", apiKey). The signature might be stolen as

well, but it will be useless for malefactors as they will only be

able to �nd lungo with it.

Instead of  API keys, time-based one-time passwords (TOTP)

might be used. These tokens are valid for a short period of  time

only (typically, one minute), making it much more complicated

to use stolen keys.



�. Filing complaints to the administration (hosting providers, app store

owners) in case the malefactor distributes their application through

stores or uses a diligent hosting service that investigates abuse �lings.

Legal actions are also an option, much more so compared to

countering user fraud, as illegal access to the system using stolen

credentials is unambiguously outlawed in most jurisdictions.

�. Banning compromised API keys; the partners' reaction will be, of

course, negative, but ultimately every business will prefer temporary

disabling of  some functionality over receiving a multi-million bill.



Chapter 59. Supporting Customers

Let's shi� our focus from banning users to supporting them. First and

foremost, it's essential to clarify that when we discuss supporting API

customers, we are referring to aiding developers and to some extent

business partners. End users rarely directly interact with APIs directly,

except for a few non-standard cases:

�. If  the API vendor can not reach partners who are using the API

incorrectly, it might have to display errors that end users can see. This

situation might arise if  the API was initially provided for free with

minimal partner identi�cation requirements during the growth

phase, and then the conditions changed (such as a popular API

version no longer being supported or becoming a paid service).

�. If  the API vendor cannot reproduce a problem and needs to reach out

end users to gather additional diagnostics.

�. If  the API is used to collect UGC content.

The �rst two cases are, in fact, consequences of  product or technical �aws

in API development and they should be avoided. The third case di�ers

little from supporting end users of  the UGC service itself.

When discussing support for partners, it revolves around two major

topics:

Legal and administrative support regarding the terms of  service and

the SLA. This typically involves responding to inquiries from

business owners.

Assisting developers with technical issues.

While the former is undoubtedly crucial for any healthy service including

APIs, it bears little API-related speci�cs. In the context of  this book, our

primary focus is on the latter.



As an API is a product for developers, customer will, in fact, inquire about

how this speci�c piece of  code that they have written works. This fact

raises the level of  expertise required among customer support sta�  quite

high as you need a so�ware engineer to read the code and understand the

problem. But this is only half  of  the problem; another half  is, as we have

mentioned in previous chapters, that most of  these questions will be asked

by inexperienced or amateur developers. In the case of  a popular API, it

means that 9 out of  10 inquiries will not be about the API. Less skilled

developers lack language knowledge, have fragmented experience with the

platform, and struggle to articulate their problems e�ectively (and

therefore search for an answer on the Internet before contacting support,

although, let's be honest, they usually don't even try).

There are several options for addressing these issues:

�. The most user-friendly scenario is to hire individuals with basic

technical skills for the �rst line of  support. These employees must

possess su�cient expertise in understanding how the API works to

identify unrelated questions and respond to them with

corresponding FAQs. They should also be capable of  pointing users

toward external resources, such as the OS support service or the

community forum for the programming language, if  the problem is

not about the API itself, and redirect relevant issues to the API

developers.

�. The inverse scenario requires partners to pay for technical support,

with API developers responsible for answering questions. While this

approach doesn't signi�cantly impact the quality of  inquiries (as it

still primarily involves inexperienced developers who can't solve

problems independently), it eliminates hiring challenges. This allows

for the luxury of  having engineers handle �rst-line support.



�. In some cases, the developer community, either partially or fully, can

assist in resolving amateur problems (see the “Communicating with

Developers” chapter). Community members are o�en capable of

answering these questions, especially with the assistance of

moderators.

Importantly, regardless of  the chosen option, API developers must handle

second-line support because only they can fully understand the problems

and the partners' code. That implies two important consequences:

�. You must take into account working with inquiries when planning

the API development team's time. Reading unfamiliar code and

remote debugging are challenging and exhausting tasks. The more

functionality you expose and the more platforms you support, the

heavier the load on the team in terms of  dealing with support tickets.

�. As a rule, developers are totally not happy about the prospect of

coping with incoming requests and answering them. The �rst line of

support will still let through a lot of  dilettante or poorly formulated

questions, and that will annoy on-duty API developers. There are

several approaches to mitigate this problem:

Try to �nd individuals with a customer-oriented mindset who

enjoy this activity, and encourage them (including �nancial

stimulus) to perform support functions. This could be someone

on the team (not necessarily a developer) or an active

community member.

Distribute the remaining workload among the developers

equitably and fairly, up to introducing a duty calendar.

And of  course, analyzing the questions is a useful exercise for populating

FAQs and improving documentation and �rst-line support scripts.



External Platforms

Sooner or later, you will discover that customers ask their questions not

only through o�cial channels but also on various Internet-based forums,

starting from those speci�cally created for this purpose, like

StackOver�ow, and ending with social networks and personal blogs.

Whether you choose to invest time in searching for such inquiries is up to

you. We would rather recommend providing support through platforms

that o�er convenient tools for supporting users, such as subscribing to

speci�c tags.



Chapter 60. Documentation

Regrettably, many API providers pay miserable attention to the quality of

documentation. Meanwhile, documentation is the face of  the product and

the entry point to it. The problem becomes even worse when we

acknowledge that it's almost impossible to write help articles that

developers will �nd satisfactory.

Before we delve into describing documentation types and formats, we

should emphasize one important point: developers interact with your help

articles quite di�erently from what you might expect. Think about

yourself  working on a project; you take very speci�c actions:

�. First, you need to quickly determine whether this service meets your

needs in general.

�. If  it does, you then search for speci�c functionality to resolve your

particular case.

Newcomers (i.e. , developers who are not familiar with the API) typically

want just one thing: to assemble the code that solves their problem from

existing code samples and never return to this issue again. Sounds not

exactly reassuringly, given the amount of  work invested in the API and its

documentation development, but it is how the reality looks like. This is

also the root cause of  developers' dissatisfaction with the documentation:

it is literally impossible to have articles that precisely cover the problem

the developer is facing detailed exactly to the extent the developer

understands the API concepts. Additionally, experienced users (i.e. ,

developers who have already learned the basic concepts and are now

trying to solve more advanced problems) do not need these “mixed

examples” articles as they seek a deeper understanding.



Introductory Notes

Documentation frequently su�ers from excessive formality. It's o�en

unnecessary in�ated and written using terminology that requires

consulting the glossary before reading the actual article. So instead of  a

concise answer to a user's question, a couple of  paragraphs is conceived —

a practice we strongly disapprove of. Ideal documentation must be simple

and laconic, with all terms either explained in the text or referenced for

clari�cation. However, “simple” doesn't mean “illiterate”: remember,

documentation is the face of  your product, so grammar errors and

improper use of  terms are unacceptable.

Also, keep in mind that documentation will be used for searching.

Therefore, every page should contain all the necessary keywords to be

properly ranked by search engines. Unfortunately, this requirement

contradicts the principle of  simplicity and conciseness. This is the way.

Documentation Content Types

1. Specification / Reference

Every documentation starts with a formal functional description. This

content type is the most inconvenient to use, but it is essential. A reference

is the hygienic minimum of  the API documentation. If  you don't have all

methods, parameters, options, variable types, and their allowed values

described, it's not an API but amateur dramatics.

Today, a reference must also be a machine-readable speci�cation

compatible with some standard, for example, OpenAPI.

The speci�cation must comprise not only formal descriptions but also

implicit agreements, such as the order of  event generation or the less

obvious side-e�ects of  API methods. Its important applied value lies in

advisory consulting: developers will refer to it to clarify unclear situations.



Importantly, a formal speci�cation is not documentation per se.

Documentation is the words you write in the descriptions of  each �eld and

method. Without these descriptions, the speci�cation can only be used to

check whether your naming is �ne enough for developers to guess the

meaning of  signatures.

Today, method nomenclature descriptions are o�en additionally

presented as ready-to-use request collections or code fragments for

Postman or similar tools.

2. Code Samples

From the above-mentioned, it is evident that code samples are a crucial

tool for acquiring and retaining new API users. Well-chosen examples help

newcomers start working with the API while improper example selection

will greatly reduce the quality of  your documentation. When assembling a

set of  code samples, it is important to follow these rules:

Examples must cover actual API use cases: the better you understand

the most frequent developers' needs, the more friendly and

straightforward your API will appear to them.

Examples must be concise and atomic: mixing a bunch of  tricks in

one code sample dramatically reduces its readability and

applicability.

Examples must resemble real-world app code. The author of  this

book once faced a situation when a synthetic code sample, totally

meaningless in the real world, was mindlessly replicated by

developers in abundance.

Ideally, examples should be linked to all other kinds of  documentation.

For example, the reference might contain code samples relevant to the

entity being described.



3. Sandboxes

Code samples will be much more useful to developers if  they are “live,” i.e. ,

provided as editable pieces of  code that could be modi�ed and executed. In

the case of  library APIs, an online sandbox featuring a selection of  code

samples will su�ce, and existing online services like JSFiddle might be

used. With other types of  APIs, developing sandboxes could be much more

complicated:

If  the API provides access to some data, then the sandbox must allow

working with a real dataset, either a developer's own (e.g. , bound to

their user pro�le) or some test data.

If  the API provides an interface, visual or programmatic, to some

non-online environment, like UI libs for mobile devices do, then the

sandbox itself  must be an emulator or a simulator of  that

environment, in the form of  an online service or a standalone app.

4. Tutorials

A tutorial is a speci�cally written human-readable text describing

concepts of  working with the API. A tutorial is something in-between a

reference and examples. It implies some learning, more thorough than

copy-pasting code samples, but requires less time investment than

reading the whole reference.

A tutorial is a sort of  “book” that you write to explain to the reader how to

work with your API. So, a proper tutorial must follow book-writing

patterns, i.e. , explain the concepts coherently and consecutively chapter

a�er chapter. Also, a tutorial must provide:

General knowledge of  the subject area; for example, a tutorial for

cartographical APIs must explain trivia regarding geographical

coordinates and working with them

Proper API usage scenarios, i.e. , the “happy paths”



Proper reactions to program errors that could happen

Detailed studies on advanced API functionality (with detailed

examples).

Usually, a tutorial comprises a common section (basic terms and concepts,

notation keys) and a set of  sections regarding each functional domain

exposed via the API. Frequently, tutorials contain a “Quick Start” (“Hello,

world!”) section: the smallest possible code sample that would allow

developers to build a small app atop the API. “Quick Starts” aim to cover

two needs:

To provide a default entry-point, the easiest to understand and the

most useful text for those who heard about your API for the �rst time

To engage developers, to make them interact with the service by

means of  a real-world example.

Also, “Quick starts” are a good indicator of  how well you have done your

homework of  identifying the most important use cases and providing

helper methods. If  your Quick Start comprises more than ten lines of

code, you have de�nitely done something wrong.

5. Frequently Asked Questions and Knowledge Bases

A�er you publish the API and start supporting users (see the previous

chapter) you will also accumulate some knowledge about what questions

are asked most frequently. If  you can't easily integrate answers into the

documentation, it's useful to compile a speci�c “Frequently Asked

Questions” (aka FAQ) article. A FAQ article must meet the following

criteria:

Address the real questions (you might frequently �nd FAQs that were

re�ecting not users' needs, but the API owner's desire to repeat some

important information once more; it's useless, or worse — annoying;

perfect examples of  this anti-pattern realization might be found on

any bank or airline company website)



Both questions and answers must be formulated clearly and

succinctly. It's acceptable (and even desirable) to provide links to

corresponding reference and tutorial articles, but the answer itself

can't be longer than a couple of  paragraphs.

Also, FAQs are a convenient place to explicitly highlight the advantages of

the API. In a question-answer form, you might demonstrably show how

your API solves complex problems easily and handsomely. (Or at least,

solves them, unlike the competitors' products.)

If  technical support conversations are public, it makes sense to store all

the questions and answers as a separate service to form a knowledge base,

i.e. , a set of  “real-life” questions and answers.

6. Offline Documentation

Though we live in the online world, an o�ine version of  the

documentation (in the form of  a generated �le) still might be useful — �rst

of  all, as a snapshot of  the API speci�cation valid for a speci�c date.

Content Duplication Problems

A signi�cant problem that harms documentation clarity is API versioning:

articles describing the same entity across di�erent API versions are

usually quite similar. Organizing convenient searching capability over

such datasets is a problem for internal and external search engines as well.

To tackle this problem ensure that:

The API version is highlighted on the documentation pages

If  a version of  the current page exists for newer API versions, there is

an explicit link to the actual version

Docs for deprecated API versions are pessimized or even excluded

from indexing.



If  you're strictly maintaining backward compatibility, it is possible to

create a single documentation for all API versions. To do so, each entity is

to be marked with the API version it is supported from. However, there is

an apparent problem with this approach: it's not that simple to get docs for

a speci�c (outdated) API version (and, generally speaking, to understand

which capabilities this API version provides). (Though the o�ine

documentation we mentioned earlier will help.)

The problem becomes worse if  you're supporting not only di�erent API

versions but also di�erent environments  / platforms  / programming

languages; for example, if  your UI lib supports both iOS and Android.

Then both documentation versions are equal, and it's impossible to

pessimize one of  them.

In this case, you need to choose one of  the following strategies:

If  the documentation topic content is totally identical for every

platform, i.e. , only the code syntax di�ers, you will need to develop

generalized documentation: each article provides code samples (and

maybe some additional notes) for every supported platform on a

single page.

On the contrary, if  the content di�ers signi�cantly, as is the case with

iOS / Android, we might suggest splitting the documentation sites (up

to having separate domains for each platform): the good news is that

developers almost always need one speci�c version, and they don't

care about other platforms.



The Documentation Quality

The best documentation happens when you start viewing it as a product in

the API product range, i.e. , begin analyzing customer experience (with

specialized tools), collect and process feedback, set KPIs and work on

improving them.

Was This Article Helpful to You?

Yes / No

https://forms.gle/WPdQ9KsJt3fxqpyw6


Chapter 61. Testing Environments

If  the operations executed via the API have consequences for end users or

partners (especially those that involve costs) you must provide a test

version of  the API. In this testing API, real-world actions either don't

occur at all (for instance, orders are created but nobody serves them) or are

simulated using cost-e�ective methods (for example, sending an email to

the developer's mailbox instead of  an SMS to the user).

However, in many cases having a test version is not enough, as in our

co�ee-machine API example. If  an order is created but not ful�lled,

partners cannot test the functionality of  delivering the order or requesting

a refund. To conduct a complete testing cycle, developers need the

capability of  pushing the order through stages, just as it would happen in

reality.

A direct solution to this problem is providing test versions for a full set of

APIs and administrative interfaces. This means that developers will be

able to run a second application in parallel — the one you provide to co�ee

shops for receiving and serving orders (and if  there is a delivery

functionality, a third app, for couriers) — and perform all the actions that

co�ee shop sta�  normally does. Obviously, this is not an ideal solution for

several reasons:

Developers of  end user applications will need to additionally learn

how co�ee shop and courier apps work, which is unrelated to the task

they're solving.

You will need to invent and implement some matching algorithm: an

order made through a test application must be assigned to a speci�c

virtual courier. This actually means creating an isolated virtual

“sandbox” (meaning — a full set of  services) for each speci�c partner.



Executing a full “happy path” of  an order will take minutes, maybe

tens of  minutes, and will require performing a multitude of  actions

in several di�erent interfaces.

There are two main approaches to addressing these problems.

1. The Testing Environment API

The �rst option is to provide a meta-API for the testing environment itself.

Instead of  running the co�ee-shop app in a separate simulator, developers

are given helper methods (like simulateOrderPreparation) or a visual

interface that allows them to control the order execution pipeline with

minimal e�ort.

Ideally, you should equip this meta-API with helper methods for any

actions that are conducted by people in the production environment. It

makes sense to provide ready-to-use scripts or request collections that

demonstrate the correct API call orders for standard scenarios.

The disadvantage of  this approach is that client developers still need to

understand how the “�ip side” of  the system works, albeit in simpli�ed

terms.

2. The Simulator of Pre-Defined Scenarios

The alternative to providing the testing environment API is to simulate the

working scenarios. In this case, the testing environment takes control over

the “underwater” parts of  the system and “plays out” all external agents'

actions. In our co�ee example, this means that a�er the order is

submitted, the system will simulate all the preparation steps and then the

delivery of  the beverage to the customer.



The advantage of  this approach is that it vividly demonstrates how the

system works according to the API vendor's design plans. For example, it

shows the sequence in which events are generated and the stages the order

passes through. It also reduces the chance of  making mistakes in testing

scripts since the API vendor guarantees that the actions will be executed in

the correct order with the right parameters.

The main disadvantage is the necessity to create a separate scenario for

each unhappy path (e�ectively, for every possible error) and give

developers the capability to specify which scenario they want to run. (For

example, like this: if  there is a pre-agreed comment in the order, the

system will simulate a speci�c error, and developers will be able to write

and debug the code that deals with the error.)

The Automation of Testing

Your �nal goal in implementing testing APIs, regardless of  which option

you choose, is to allow partners to automate the QA process for their

products. The testing environment should be developed with this purpose

in mind. For example, if  an end user might be directed to a 3-D Secure

page to pay for the order, the testing environment API must provide a way

to simulate the successful (or unsuccessful) completion of  this step. Also,

in both variants, it's possible (and desirable) to allow running the

scenarios in a fast-forward manner to make automated testing much

faster than manual testing.

Of  course, not every partner will be able to take advantage of  this

possibility (which also means that a “manual” way of  testing usage

scenarios must always be supported alongside the programmatic one)

simply because not every business could a�ord to hire a QA automation

engineer. Nevertheless, the ability to write such automated tests is a

signi�cant competitive advantage for your API from a technically

advanced partner's point of  view.



Chapter 62. Managing Expectations

Finally, the last aspect we would like to shed light on is managing partners'

expectations regarding the further development of  the API. When we talk

about consumer qualities, APIs di�er little from other B2B so�ware

products: in both cases, you need to form an understanding of  SLA

conditions, available features, interface responsiveness and other

characteristics that are important for clients. Still, APIs have their

speci�cities.

Versioning and Application Lifecycle

Ideally, the API once published should live eternally; but as we are all

reasonable people, we do understand it's impossible in the real world.

Even if  we continue supporting older versions, they will still become

outdated eventually, and partners will need to rewrite the code to use

newer functionality.

The author of  this book formulates the rule of  issuing new major API

versions like this: the period of  time a�er which partners will need to

rewrite the code should coincide with applications' lifespan in the subject

area (see “The Backward Compatibility Problem Statement” chapter).

Apart from updating major versions, sooner or later you will face issues

with accessing some outdated minor versions as well. As we mentioned in

the “On the Waterline of  the Iceberg” chapter, even �xing bugs might

eventually lead to breaking some integrations, and that naturally leads us

to the necessity of  keeping older minor versions of  the API until the

partner resolves the problem.



In this aspect, integrating with large companies that have a dedicated

so�ware engineering department di�ers dramatically from providing a

solution to individual amateur programmers. On one hand, the former are

much more likely to �nd undocumented features and un�xed bugs in your

code; on the other hand, because of  the internal bureaucracy, �xing the

related issues might easily take months, if  not years. The common

recommendation there is to maintain old minor API versions for a period

of  time long enough for the most dilatory partner to switch to the newest

version.

Supporting Platforms

Another aspect crucial to interacting with large integrators is supporting a

zoo of  platforms (browsers, programming languages, protocols, operating

systems) and their versions. As usual, big companies have their own

policies on which platforms they support, and these policies might

sometimes contradict common sense. (Let's say, it's rather time to

abandon TLS 1.2, but many integrators continue working through this

protocol, or even the earlier ones.)

Formally speaking, ceasing support of  a platform is a backward-

incompatible change, and it might lead to breaking some integration for

some end users. So it's highly important to have clearly formulated

policies regarding which platforms are supported based on which criteria.

In the case of  mass public APIs, that's usually simple (like, the API vendor

promises to support platforms that have more than N% penetration, or,

even easier, just the last M versions of  a platform); in the case of

commercial APIs, it's always a bargain based on estimations, how much

not supporting a speci�c platform would cost a company. And of  course,

the outcome of  the bargain must be stated in the contracts — what exactly

you're promising to support during which period of  time.



Moving Forward

Finally, apart from those speci�c issues, your customers must be caring

about more general questions: could they trust you? Could they rely on

your API evolving, absorbing modern trends, or will they eventually �nd

the integration with your API in the scrapyard of  history? Let's be honest:

given all the uncertainties of  the API product vision, we are very much

interested in the answers as well. Even the Roman viaduct, though

remaining backward-compatible for two thousand years, has been a very

archaic and non-reliable way of  solving customers' problems for quite a

long time.

You might work with these customer expectations by publishing

roadmaps. It's quite common that many companies avoid publicly

announcing their concrete plans (for a reason, of  course). Nevertheless, in

the case of  APIs, we strongly recommend providing roadmaps, even if

they are tentative and lack precise dates — especially if  we talk about

deprecating some functionality. Announcing these promises (given the

company keeps them, of  course) is a very important competitive

advantage for every kind of  consumer.

With this, we would like to conclude this book. We hope that the principles

and the concepts we have outlined will help you in creating APIs that �t all

the developers, businesses, and end users' needs and in expanding them

(while maintaining backward compatibility) for the next two thousand

years or so.



BIBLIOGRAPHY

Bellemare, A. (2020) Building Event-Driven Microservices

ISBN 9781492057895

Birrell, A. D. , Nelson, B. J. (1984) Implementing Remote Procedure Calls. ACM

Transactions on Computer Systems (TOCS), Volume 2, Issue 1. Pages 39 - 59

dl.acm.org/doi/10.1145/2080.357392

Fielding, R. T. (2001) Architectural Styles and the Design of Network-based

So�ware Architectures

ics.uci.edu/~�elding/pubs/dissertation/top.htm

Fowler, M. (2006) GUI Architectures

www.martinfowler.com/eaaDev/uiArchs.html

Gamma, E. , Helm, R. , Johnson, R. , Vlissides, J. (1994) Design Patterns.

Elements of  Reusable Object-Oriented So�ware

ISBN 9780321700698

Gorton, I. (2022) Foundations of Scalable Systems

ISBN 9781098106065

Gourley D. , Totty, B. (2002) HTTP: The De�nitive Guide

ISBN 9781565925090

Grigorik, I. (2013) High Performance Browser Networking

ISBN 9781449344764

hpbn.co

Ho�man, A. (2024) Web Application Security. Second Edition

ISBN 9781098143930

Kleppmann, M. (2017) Designing Data-Intensive Applications

ISBN 9781449373320

https://dl.acm.org/doi/10.1145/2080.357392
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.martinfowler.com/eaaDev/uiArchs.html
https://hpbn.co/


Kung, H. T. , Robinson, J. T. (1981) On Optimistic Methods for Concurrency

Control. ACM Transactions on Database Systems, . Vol. 6, No. 2, June 1981,

Pages 213-226

dl.acm.org/doi/10.1145/319566.319567

Madden, N. (2020) API Security in Action

ISBN 9781617296024

Martin, R. C. (2023) Functional Design : Principles, Patterns, and Practices

ISBN 9780138176518

McConnell, S. C. (2004) Code Complete, Second Edition

ISBN 9780735619678

Nelson, B. J. (1981) Remote Procedure Call

dl.acm.org/doi/10.5555/910306

Shapiro, M. , Preguiça, N. , Baquero, C. , Zawirski, M. (2011) Con�ict-Free

Replicated Data Types. 13th International Conference Stabilization, Safety,

and Security of  Distributed Systems. page 386-400

link.springer.com/chapter/10.1007/978-3-642-24550-3_29

Stevens, W. R. (1990) UNIX Network Programming. Interprocess

Communication. Volume 2. Second Edition

ISBN 0130810819

Van Steen, M. , Tanenbaum A. (2024) Distributed Systems 4th edition

ISBN 9789081540629

www.distributed-systems.net/index.php/books/ds4

https://dl.acm.org/doi/10.1145/319566.319567
https://dl.acm.org/doi/10.5555/910306
https://link.springer.com/chapter/10.1007/978-3-642-24550-3_29
https://www.distributed-systems.net/index.php/books/ds4/

